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ABSTRACT

It is challenging to achieve accurate alignment for build-
ing images containing multiple planes. We propose a multi-
model geometric fitting and hierarchical homography estima-
tion method to improve the alignment performance for build-
ing images. We first extract scale-invariant feature transfor-
m (SIFT) features of the images, and then adopt the multi-
homography fitting algorithm to classify the feature points
into different deformation models. According to the deduced
deformation models, we partition the source image into base
and transition regions. For the base regions, we adopt the
moving direct linear transformation (Moving DLT) to esti-
mate homographies. For the transition regions, we propose
a hierarchical homography estimation method to select ap-
propriate homographies. Experimental results show that our
method achieves more accurate alignment results compared
with state-of-the-art alignment methods for building images.

Index Terms— Image alignment, feature matching,
multi-model geometric fitting

1. INTRODUCTION

Image alignment plays a fundamental role in image align-
ment [15], cloud-based coding [17] and video stabilization
[12][2], etc. Generally, the alignment performance depend-
s on the accuracy of the estimated homographies. A global
homography [15][7] works well for planar scenes or parallax-
free camera motions. When the input images violate these
imaging assumptions, the global warp may lead to ghosting
artifacts or structure distortions. Therefore, the local warping
models [11][18] have been emerging in recent years.

Many local warping models have been proposed in re-
cent years. Lin et al. proposed a smoothly varying affine
(SVA) warping method to handle local deformations while
still preserving global affinity [11]. Due to the insufficien-
t degrees of freedom of the affine model, the SVA cannot
achieve projective warping. An extension of SVA is proposed
by Zaragoza et al., called as-projective-as-possible (APAP),
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Fig. 1: Illustration of the base (B) and transition (T) regions.

which achieved a smoothly varying projective stitching by
moving direct linear transformation (DLT) [18].

Hereafter, Chang et al. presented a shape-preserving half-
projective (SPHP) warping to achieve gradually change from
projective to similarity [4]. Though it can reduce the distor-
tions and preserve the image shape, it is sensitive to param-
eter selection. To suppress the perspective effect, Lin et al.
proposed an adaptive as-natural-as-possible (ANAP) warping
by linearizing the homography in the nonoverlapping regions
while combining these homographies with global similarity
transformation [9]. Though it is robust to parameter selec-
tion, there are some local distortions in stitched images. Re-
cently, Xiang et al. proposed a local warping combing line
constraints into a global similarity transform, which could
keep the content-consistence of the image and mitigates pro-
jective distortions [16]. Lin et al. proposed a seam-guided lo-
cal alignment method for large parallax image stitching [10].
This approach mainly coupled the local alignment computa-
tion and used the seam estimation via adaptive feature weight-
ing. Li et al. proposed a quasi-homography warp to balance
perspective distortion against projective distortion in the non-
overlapping region [8]. Shi et al. presented a multi-model
method to improve the alignment performance for image set
compression [14]. We can see that there’s a trend to develop
more delicate warping functions for better alignment results.

Since the alignment for images composed by multiple
planes cannot be modeled well with a global homography
or multiple equally divided local homography transforms, in
this paper we propose a multi-model geometric fitting and
hierarchical homography estimation method to improve the
alignment performance.
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Fig. 2: Framework of the proposed method.

2. THE PROPOSED METHOD

The framework of our method is illustrated in Fig.2. First,
SIFT features are extracted and matched between the source
and target images. Then, these matching points are divided
into multiple groups utilizing the multi-homography fitting
method. Then, the source image is partitioned into base and
transition regions according to the matched feature groups.
Finally, the homographies for the base regions are estimated
with the moving DLT and the homographies for the transition
regions are calculated by the proposed hierarchical homogra-
phy transform. These modules are detailed in the following
subsections.

2.1. Multi-homography Fitting and Region Partition

2.1.1. Multi-homography Fitting

We first extract their SIFT features and their matching fea-
ture points from the source image I and the target image I ′

using the matching criteria proposed in [13]. Then we use the
RANSAC algorithm [6] to remove the outliers. We denote a
set of the matched feature points in source and target images
as Ω = {xi} and Ω′ = {x′i}, respectively. The geometric re-
lationships between different feature points in Ω are modeled
via triangulation mesh. We adopt the graph-cut algorithm [3]
to classify these matched points into different groups. The
objective function is defined as

E(H) = ED(H) + λES(H), (1)

where, H = {Hi}, ED(H) is the data term to minimize the
distance between transformed x and x′. ES(H) is the smooth
term, which constraints neighboring feature points have the
same homography. λ is the weighting parameter to balance
the weight between data and smooth terms. It is set to 10 in
this paper. The data term is defined as

ED(H) =
∑
i

D(Hi, xi, x′i),

D(Hi, xi, x′i) = ‖Φ(Hix̃i)− x′i‖22,
(2)

where x̃i = [x>i , 1]> is x in homogeneous coordinates. Φ(·)
represents converting the homogeneous coordinates to inho-
mogeneous coordinates. D(Hi, xi, x′i) measures the distance

between the warping point of xi and its matching point x′i. Hi

is a homography with size 3× 3. The smooth term is defined
as

ES(H) =
∑

xj∈N (xi)

S(Hi,Hj), (3)

where N (xi) is the neighboring feature points of xi and the
neighboring relationship is defined by the triangulation mesh.
The penalty function S(Hi,Hj) equals 1 if Hi 6= Hj , other-
wise S(Hi,Hj) = 0.

The minimization of the energy function in Eq. (1) can be
approximated by the graph-cut algorithm. The data node in
the graph is the feature point xi and the label for each node
is the homography Hi. The edge weights between data nodes
and labels are defined by the data term in Eq. (2). The edge
weights between data nodes are defined by the smooth term
defined in Eq. (3). The label candidates Hi is generated by
randomly selecting four matching pairs to calculate one ho-
mography. In this paper, we initialize 3000 homographies as
labels.

As a result, the feature points of the two images are classi-
fied into different groups using the above method. As shown
in Fig.1, the feature points in the source image are classified
into two different groups, denoted by purple and blue points
respectively.

2.1.2. Region Partition

After multi-homography fitting, each feature point in the
source image is assigned a unique label, namely, that the fea-
ture points in Ω are classified into several regions. Suppose
there are M regions, and we denote the i-th feature point in
the m-th region as xm,i. Then the boundary for each region is
calculated as

B′m,l = max{min {xm,i − 3s(xm,i)} , 1},
B′m,r = min{max {xm,i + 3s(xm,i)} ,W},
xm,i ∈ Ωm, Bm,r = min

{
B′m,r, B

′
m+1,l

}
,

Bm,l = max
{
B′m,l, B

′
m−1,r

}
,

(4)

where Ωm is the feature point set in the m-th region and
s(xm,i) is the scale of the feature point xm,i. W is the width
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of the source image. The multiplication factor before s(xm,i)
is set as 3 because the SIFT descriptor is calculated in a re-
gion with radius that equals to 3s(xm,i). Bm,l is the left (top)
boundary, and Bm,r is the right (bottom) boundary for the
m-th region. These regions are named as base regions, and
the regions between neighboring base regions are named as
transition regions. Two region partition examples are present-
ed in Fig. 1. Considering that the building images are usually
captured with the sky at the top and the ground at the bottom
of the image, the boundaries in this work mainly means the
left and right boundaries.

2.2. Hierarchial Homography Estimation

2.2.1. Homography Estimation in Base Regions

The base region is still not a perfect planar scene. There-
fore, utilizing a basic homography to warp the base region
will produce misalignment. Therefore, we adopt the mov-
ing DLT algorithm [18], which estimates location dependent
homography, to warp the base region. Each base region is di-
vided into C1 ×C2 cells. A point x∗ in the source image I is
warped to the position x̂∗ in the target image I ′ by

x̂∗ ∼ H∗x̃∗, (5)

where x̃∗ is the homogeneous coordinates of x∗. The homog-
raphy H∗ for current cell is obtained by minimizing

h∗ = arg min
h

∑
i

‖wi
∗aih‖2 s.t. ‖h‖ = 1, (6)

where h∗, of size 9 × 1, is the vectorized version of H∗. ai
is derived by the formula x̂i × Hix̃i = 03×1. The weight
parameter wi

∗ is defined as

wi
∗ = max(exp(−‖x∗ − xi‖2/δ2), γ), (7)

where xi is the i-th feature point in current region and x∗ is
the center point of current cell. δ is a scaling parameter, and γ
is introduced to prevent numerical problems (e.g. poor data).
In this way, the homography in each cell is locally adapted
to its content and the homographies in neighboring cells are
varying smoothly. For more information, please refer to [18].

2.2.2. Homography Estimation in Transition Regions

The transition regions may contain multiple planes, which
need more delicate homographies to warp them. We first uti-
lize moving DLT to generate homography candidates for the
transition region and then utilize graph cut to choose the most
suitable homography for each cell, resulting in hierarchical
homographies.

For the transition region Tm between the m-th and
(m+1)-th base regions, we denote its candidate matching
feature points as ΩTm

= Ωm

⋃
Ωm+1. We gradually select

feature points from ΩTm and utilize these feature points to
generate candidate homographies via moving DLT. We de-
note the candidate homographies for transition region Tm

as HTm . Hereafter, we divide the transition region Tm into
Ct1 × Ct2 cells. For each cell, we choose its most suitable
homography fromHTm

via graph cut. The objective function
is defined as

E(HTm) = ED(HTm) + βES(HTm). (8)

The data term ED(HTm
) is defined as

ED(HTm) =
∑
k

∑
j

‖ηwj,kD(Hk, xj , x′j)‖22, (9)

where Hk ∈ HTm
represents the homography for the k-th cell

and xj ∈ ΩTm
. η is a constant parameter, which is set to 100

in our experiments. The distance function D(Hk, xj , x′j) =

‖Φ(Hkx̃j)− x′j‖22 is the same as that defined in Eq. (2). The
weighting parameter wj,k is introduced to adjust the penal-
ty of the feature points warping accuracy according to their
distance to the k-th cell. It is defined as Eq. (10),

w̃j,k = Uk − ‖pk − xj‖2 + 1,

Uk = max{‖pk − xj‖2},

wj,k =
w̃j,k∑
j w̃j,k

(10)

where pk is the center point of the k-th cell.
The smooth term is defined as

ES(HTm) =
∑

t∈N (k)

‖Ht −Hk‖1, (11)

where Ht is the homography for the neighboring cell of the
k-th cell. The smooth term weighting parameter β is set to
10 for boundary cells, otherwise β is set to 0.01. Utilizing
the graph cut algorithm to solve Eq. (8), we obtain the ho-
mography for each cell. Note that, here we utilize l1 norm
constraint instead of the penalty function utilized in Eq. (3)
because the homography matrixes in transition regions should
be smoothly varied other than have hard discontinuities.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed method by comparing with APAP [18], SPHP [4], the
alignment method in video stablization (AMVS) [12], and
GSP [5], since the four methods have released codes. We
utilize the images in Zurich building database as our test set
[1]. Our method takes about 40 to 50 seconds to align two
images with resolution of 640 × 480 using Matlab on a PC
with Intel i5 3.0 GHz CPU and 6 GB RAM.

Fig. 3 presents the alignment results in terms of the su-
perposition of the warped source image and target image for
three test images. It can be observed that the compared four
methods have ghosting artifacts to some extent since their
transformations are not finetuned according to image planes.
For example, for the first image, SPHP and AMVS generate
obvious ghosting artifacts for the letters on the building. For
the second image, all the four compared methods have ghost-
ing artifacts on the letters in the base region, while our method
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Fig. 3: Comparison of image alignment results in terms of the the superposition of the warped source image and target image.
From left to right, the results are generated by APAP, SPHP, AMVS, GSP, and the proposed method. To show the details clearly,
we zoom in the crops highlighted by color boxes for each image.

produces accurate alignment result in this region, since our
homographies in base regions are calculated without the dis-
turbance from the feature points in other regions. For the
third image, the first three compared methods have ghosting
artifacts in the transition region. Thanks to our hierarchical
homography transform estimation, our method generates ac-
curate alignment result in transition regions, comparable with
that of GSP.

4. CONCLUSION
In this paper, we propose a novel image alignment method

for building images containing multiple planes, which cannot

be aligned well using single homography. We first partition
the source image into base and transition regions according
to the matched feature groups, which are derived via graph-
cut algorithms. Then, for the base regions, we calculate the
transformations via moving DLT algorithm. For the transi-
tion regions, we propose a hierarchical homography estima-
tion method to refine the initialized homographies. Experi-
ment results demonstrate that our method achieves state-of-
the-art alignment performance for building images. Our work
also has limitations. The proposed method may fail to detect
small base regions, which have few matching points.
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