ROBUST HAZE REMOVAL VIA JOINT DEEP TRANSMISSION AND SCENE PROPAGATION
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ABSTRACT

Haze is one of the most important factors which reduce
the outdoor image quality. Existing approaches often aim to
design their models based on principles of hazes. However,
even with exactly modeled haze distribution, it is still a chal-
lenging task due to factors in real scenario, such as noises, ha-
los and artifacts. To address limitations of existing approach-
es for real-world hazy removal problem, this paper propos-
es a novel framework to incorporate deep residual architec-
tures into a propagation scheme to jointly estimate transmis-
sion and clean scene. We evaluate the proposed framework
on both widely used benchmarks and real-world low-quality
hazy images. Extensive experimental results demonstrate that
our method performs favorably against approaches designed
only based on haze cues and achieves the state-of-the-art re-
sults, compared with both conventional shallow models and
deep dehzaing networks.

Index Terms— Robust haze removal, transmission map
estimation, deep residual learning, image propagation

1. INTRODUCTION

Haze is a common atmospheric phenomenon which causes
visibility limited and reduce the quality of outdoor images.
The reason of such phenomenon is that the light reflecting
from the object is scattered by haze and only a part of light
can arrive at lens finally. Since outdoor images are very im-
portant in computer vision, hazy images removal is highly de-
sired. Haze images removal is a challenging ill-posed prob-
lem, because hazy images have unknown depth. A variety
of methods for hazy images removal are proposed based on
multiple information of images and depth. Most methods
have been proposed via atmospheric scattering model which
is first proposed by McCartney et al. [1] and further develope-
d by Narasimhan ef al. [2] and Nayar et al. [3]. In general,
scene transmission estimation by the depth of images and sur-

This work is partially supported by the National Natural Science Foun-
dation of China (Nos. 61672125, 61733002, 61572096, 61772108 and
61632019), and the Fundamental Research Funds for the Central Universi-
ties. Dr. Liu is also a visiting researcher with Shenzhen Key Laboratory of
Media Security, Shenzhen University, Shenzhen 518060.

*Corresponding author. E-mail: rsliu@dlut.edu.cn

978-1-5386-4658-8/18/$31.00 ©2018 IEEE

1373

rounding scattered light [4, 5, 6] is used to build atmospheric
scattering model.
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Fig. 1. Visual comparisons of our method with state-of-the-
art robust dehazing approaches (e.g., [7, 8]) on a real low-
quality hazy image. The result of [7] is over smooth and the
method in [8] may hard to remove the artifacts. In contrast,
the result of our method is more clear and with less artifacts.

Since accurate transmission plays very important role for
recovering the clear image, a local contrast maximization
method [9] is proposed based on the assumption that the local
contrast of haze-free images is much higher than the hazy
images in Markov random field framework. However, the
results of this method are often over-saturated. The work
in [10] can remove most hazes from corrupted observations.
But it is hard to handle the dense-haze situations as it always
assumes that the shading and transmission are locally and
statistically uncorrelated. Dark channel prior (DCP) is a clas-
sical method [4] based on the assumption that pixels at the
local regions (expect for the sky) in most outdoor scenes are
very low at least one color channel. However, DCP cannot
solve such condition that images do not have shadow and the
pixels values of the object are similar to the airlight. Berman
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et al. [11] defines the concept of haze-line which is the tight
clusters of a few hundred distinct colors in RGB space, this
method can hardly detect the haze line when the airlight is
significantly brighter than the scene. To address limitations
in DCP, the work in [7] builds an optimization problem with
contextual regularization to estimate transmission and it helps
to further reduce the ambiguity between color and depth.

With the developments in deep learning, convolutional
neural networks (CNNs) based methods [12, 13, 14, 15] have
been proposed in recent years. Different from traditional shal-
low approaches, which are designed based on different haze
cues, CNN based methods often discord the principles of at-
mospheric scattering model. The methods [16, 17] also di-
rectly establish the correlations between transmission maps
and clear images. Moreover, these methods are also sensitive
to noises and low-quality images (see Fig. 1).

In summary, most existing shallow methods may hard to
handle complex real scenario, while the performance of deep
networks may heavily rely on the scale and quality of training
data. To address limitations in these approaches, we devel-
op a novel framework to incorporate deep residual architec-
tures into a propagation scheme to simultaneously estimating
transmission maps and recovering the clean images. We will
demonstrate that the proposed joint propagation can provide
us an efficient and robust haze removal method, especially for
real-world scenario.

2. JOINT DEEP TRANSMISSION AND SCENE
PROPAGATION

In this section, we first build the basic energy model about
haze removal with the implicit prior term based on atmospher-
ic scattering model. Then we solve the energy model by half
quadratic optimization to obtain the iterative scheme. Next,
we exploit joint deep transmission and scene propagation to
solve the subproblems in the iterative scheme.

2.1. The Fundamental Haze Removal Model

Based on atmospheric scattering model, the general physical
haze removal model can be described as follows:

I(x) = t(x)J(x) + (1 - t(x)) A, M

where I is the observed hazy image, J is the latent clear im-
age, A is the global atmospheric light, and ¢ is the scene trans-
mission describing the portion of the light that is not scattered
and reaches the camera. The goal of haze removal is to solve
three variables including J, A and ¢.

Inspired by the prior regularization ideas in existing im-
age processing formulations, we reformulate Eq. (1) as using
maximum a posteriori framework with abstract prior terms
and then consider the following energy minimization model:

min FI(x),£(x)) + 2I(0) + LX), @

where F(J,t) = $[[I-t® J — (1 —t) © A3 is the fidelity
term, ® represents the matrix dot product. We also introduce
®(-) and ¥(-) to represent the regularization term of the haze
removal image J and the regularization term about the trans-
mission ¢, respectively. Till now, the energy model on the
task of single image haze removal has been built. In the fol-
lowing, we will introduce a novel framework to incorporate
deep network architectures to optimize Eq. (2).

2.2. Optimization with Deep Network Architecture

In general, based on half quadratic optimization [18] and the
alternating direction type in [19], we set the auxiliary vari-
ables as J = J and ¢ = ¢. As thus, we can split these two reg-
ularization terms. We can solve Eq. (2) via half-quadratic op-
timization to obtain the original iterative scheme as follows:

1
{341 = argain )| (3 — A) 0 ¢+ (A - )3

Qg Bk = ©)
+ ot =3+ ST = IF3,
2 2
Jk+1 = argmin %HJ]C—H —j||§+@(j), 4)
J
et argmjn%”tk"'l — 72 + (). )
t

where «, 8 are penalty parameters and should keep the ten-

dency of increasing in the iteration process theoretically.
Because of the Eq. (3) is differentiable, we can get a

closed-form solution. The specific formulations as

ot [1=8) 0 @ = &) + i
(TR = A) O (IF — A) + oy

JhHL _ Brd* + A @ thtl o th+l 4 (I— A) @ tht!
- th 1 @ th 1 4 B,

. (6)

. (D)
Due to the fact that ®(J) and W(f) are coupled, we can-
not directly obtain our solution. Therefore, we employ a
plug-and-play mechanism to solve these two subproblems by
jointly performing deep transmission and scene propagation.
We set N3(J*+1;©5) denoting the network for latent im-
age estimation and ©3 denoting parameters appeared in Nj.
Similarly, we set the network for transmission estimation as
N (t*+1;©,), ©; denotes parameters appeared in A;. Then
Eq. (4) and Eq. (5) can be rewritten as

JEHL = R A (IR ). (8)
Ekﬂ’l — tk“rl _ M(tk+1, et) (9)

In fact, it is evident that the designed networks resemble
to give a descent direction by observing Eq. (8) and Eq. (9).
And it can further explain the efficiency of the networks in the
theoretical sense. Now, we can summarize the final iterative
scheme to original images as shown in Alg. 1 from above all.
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SSIM / L1 Error 0.946 / 0.054 0.970/0.031
Haze [7] [11]

0.968 /0.031 0.897/0.039

0.972/0.027
[4] [8] Ours

Fig. 2. Haze removal results on the Roadl image. Top row: Dehazing results. Bottom row: The estimated transmission maps.

The scores of SSIM and L; Error are also reported accordingly.

Algorithm 1 Joint Deep Transmission and Scene Propagation
Input: I, J% % g, Bo, Vs 0, kmax > 1

1. fork=1,---,kpq. do

2:  Update t by Eq. (6).

3:  Update J by Eq. (7).

40 JkH1 = gkt — N3 (I 05).
5 t~k+1 — tk+1 _-/\[t(tk+1; @t)

6: Qpy1 =Y.

7 Br1 =Pk

8: end for

QOutput: J* t*

3. EXPERIMENTAL RESULTS

In order to make the verification of the proposed method bet-
ter, we first conduct the experiments on the widely used Fat-
tal’s dataset [20] and adopt the method of [6] to estimate the
global atmospheric light. We evaluate our method via exper-
iments on distinct datasets. The first section reports the net-
work architecture and training data. The second experiment
reports the result of different methods in synthetic hazy im-
ages without noises generated on Fattal’s dataset [20]. Then
we conduct the third experiment on the performance of dif-
ferent methods in synthetic hazy images with 10% Gaussian
noises. Finally, we test the visual quality of different methods
in high and low quality images.

3.1. Network Architecture and Training data

In the designed method, the architecture of the network real-
ly matters. In this paper, we adopt the same basic architec-
ture for different tasks that consists of 7 dilated convolution
layers, 7 corresponding ReLu nonlinearity layers and 5 batch
normalization layers following the work in [21].

In regard to the training data of the latent images esti-
mation network, we collect 800 images combining 400 im-
ages from Berkeley segmentation dataset [22] and 400 images
from ImageNet database [23]. In addition, we add 12% Gaus-
sian noises as the inputs of network. As for training transmis-

sion estimation network, we randomly collect 400 clear im-
ages with the size of 624 x464 and corresponding depth maps
from NYU Depth dataset [24]. Specifically, we first gener-
ate hazy images by real transmissions based on atmospheric
scattering model. Then we generate the input transmission-
s by [7] and add 10% Gaussian noises. In order to train the
suitable networks, the learning rate decreases from le — 1 to
le — 4 for the 50 epochs based on these training data during
the training process.

3.2. Synthetic Hazy Images

We first compared the performance of our method with other
state-of-the-art dehazing methods [4, 8, 7, 11] on the widely
used Fattal’s dataset [20]. Averaged quantitative scores, such
as PSNR, SSIM and L; error, are reported in Table 1. We ob-
served that our method achieved better results than other de-
hazing methods. Moreover, we illustrate visual comparisons
in Fig. 2. It also can be seen that our method can successfully
wipe out the haze in the distance and thus our result has the
better visual expression in hue.

Table 1. Averaged quantitative results on Fattal’s dataset
without noises.

[7] [8] [11] [4] Ours

PSNR | 26.13 | 26.47 | 26.09 | 27.11 | 27.32
SSIM | 0.951 | 0.926 | 0.953 | 0.957 | 0.959
L1 Error | 0.040 | 0.037 | 0.041 | 0.034 | 0.033

Table 2. Averaged quantitative results on Fattal’s dataset with
10% Gaussian noises.

[7] [8] [11] [4] Ours

PSNR | 23.24 | 25.24 | 23.60 | 24.51 | 25.81
SSIM | 0.699 | 0.755 | 0.677 | 0.703 | 0.820
Ly Error | 0.055 | 0.043 | 0.053 | 0.047 | 0.040
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SSIM / L1 Error 0.728 7 0.061
Hazy Image [11]

0.764 / 0.049

0.794/0.050 0.868 / 0.040
[8] Ours

Fig. 3. Dehazing results on the mansion image (with 10% Gaussian noises). Top row: Dehazing results. Bottom row: The
estimated transmission maps. The scores of SSIM and L Error are also reported accordingly.

[11]

[8] Ours

Fig. 4. Visual comparison on real hazy image.

3.3. Hazy Images with Noises

We generate low-quality hazy images by adding 10% Gaus-
sian noises on Fattal’s dataset [20] and then compare our
methods with state-of-the-art approaches on this new dataset.

Quantitative evaluation results are shown in Table 2 and
the result by our method has the outstanding performance in
contrast. Fig. 3 shows the dehazing results of different meth-
ods. It is apparent that most of the noises have been eliminat-
ed in the result of our method. In addition, our result has the
highest SSIM and the lowest L error, we can declare that our
method can recover the nature of images utmostly.

3.4. Real Low-quality Hazy Images

In general, the experiments conducted on real images are
more meaningful to evaluate the performance of the proposed
algorithm. In this part, we consider three types of real images
including high-quality hazy images, hazy images with many
artifacts and hazy images in bad weather condition.

Fig. 4 shows the comparative results about high-quality
haze images. As shown in the zoomed region, it is obvious
that our method generates the more clean image with fine
texture. The dehazing results about lower quality images as

Ours

Fig. 5. Dehazing results on low-quality images. Top row:
Hazy image with artifacts in real scenario. Bottom row:
Hazy image in bad weather condition.

shown in Fig. 5. The top row of the Fig. 5 shows the results
about real hazy image with many artifacts, and the result by
our method keeps the plain details of the background by con-
trast. The results in regard to hazy image hampered by severe
weather are shown in the bottom row of the Fig. 5. It is promi-
nent that our method recovers more luminous results than all
the other compared methods.

4. CONCLUSION

In this paper, we proposed a novel method to recover clean
images from inferior hazy images. We first built haze removal
energy model via atmospheric scattering model and implicit
prior term. Then we obtained the iterative scheme by solving
the energy model using half quadratic optimization. Next,
we exploited joint deep transmission and scene propagation
to solve the subproblems in the iterative scheme. Such a de-
sign can reduce the number of iterations of the whole itera-
tive. Results showed that our method had the outperformance
than other state-of-the-art methods on different typological
datasets including synthetic dataset with and without noise.
And we further conducted the experiments in different real
scenarios and our method had the best visual quality.
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