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ABSTRACT 
Lossy compression is an indispensable technique in image/video 

processing, due to its highly desirable ability of reducing the huge 

data volume. However, lossy compression introduces complex 

compression artifacts. To reduce these artifacts, post-processing 

techniques have been extensively studied. In this paper, we 

propose a novel post-processing technique using multi-level 

progressive refinement network via an adversarial training 

approach, called MPRGAN, for artifacts reduction and coding 

efficiency improvement in intra frame coding. Furthermore, our 

network generates multi-level residues in one feed-forward pass 

through the progressive reconstruction. This coarse-to-fine work 

fashion, which makes our network have high flexibility, can make 

trade-off between enhanced quality and computational complexity. 

Thereby facilitates the resource-aware applications. Extensive 

evaluations on benchmark datasets verify the superiority of our 

proposed MPRGAN model over the latest state-of-the-art methods 

with fast deployment running speed. 

 

Index Terms—Convolutional neural network (CNN), 

compression artifacts reduction, compression post-processing, 

image enhancement, High Efficiency Video Coding (HEVC). 

 

1. INTRODUCTION 
 

High Efficiency Video Coding (HEVC) [1] is the state-of-the-art 

video coding technology, which is able to provide similar 

subjective quality at half the bitrate of H.264/AVC [2]. Thanks to 

its outstanding coding efficiency, HEVC has been increasingly 

applied to generate video streams for saving bandwidth, to avoid 

network congestion and to reduce costs in multimedia applications. 

However, we pay for their high compression rate with complex 

compression artifacts, such as blocking artifacts, ringing artifacts, 

and blurring artifacts [3]. Block-based hybrid video coding will 

inevitably result in blocking artifacts, especially at the low bit rate 

or acute motions are contained in the input video. Ringing effects 

along the edges occur resulted from the coarse quantization of the 

high-frequency components. The removal of high frequencies 

causes blurring as well, but the blurring is less noticeable 

compared to the ringing artifacts. All these artifacts not only cause 

severe degradation on Quality of Experience (QoE), but also 

adversely affect various low-level image processing routines that 

take compressed images as input [4]. How to reduce compression 

artifacts has attracted more and more attention. 

In order to alleviate unpleasant artifacts, HEVC employ in-loop 

filtering techniques to post-process the reconstructed images, 

where a de-blocking filter (DF) is done followed by a sample 

adaptive offset (SAO) filter [5]. DF is specifically designed to 

reduce blocking artifacts, which is a predefined low-pass 

characteristics non-linear filter, without signaling any bit to 

decoder sides. Unlike DF, SAO is designed for general 

compression artifacts, which correct the quantization errors by 

sending offset values to decoders, and reconstructs image by 

adding an offset. Zhang et al. [6] proposed a compression artifact 

reduction approach that utilizes both the spatial and the temporal 

correlation to form multi-hypothesis predictions from spatio-

temporal similar blocks. Recently, Zhang et al. [7] incorporated the 

low rank regularization into HEVC in-loop filtering algorithm, and 

develop a non-local adaptive in-loop filter. However, those 

manually designed methods are insufficient for modeling 

compression artifacts, leaving a space for further improvement. 

Deep convolutional neural networks (CNN) have become a 

widespread tool to address high-level computer vision tasks very 

successfully. Recently, they also achieved great success in low-

level computer vision tasks, such as super-resolution [8], de-haze 

[9] and edge detection [10]. Inspired by these successes, it was 

also proposed utilizing CNN for artifacts reduction. Dong et al. 

first proposed an artifact reduction CNN (ARCNN) for reducing 

artifacts in JPEG compressed images [11]. ARCNN consists of 

four convolutional layers, feature extraction, feature enhancement, 

mapping and reconstruction layers, jointly in an end-to-end 

framework, and reported a remarkable jump compared to the 

previous most successful de-blocking oriented methods. 

Based on ARCNN, Park and Kim proposed a new in-loop 

filtering technique using CNN (IFCNN), to replace the DF or SAO 

in HEVC [12]. IFCNN predicts the residues between the original 

image and the reconstructed image, and decoders only need to add 

IFCNN output to the reconstructed images. However, HEVC 

supports different sizes of discrete cosine transform (DCT), 

including 4×4, 8×8, 16×16 and 32×32, while JPEG adopts a 

uniform 8 × 8 DCT. Moreover, HEVC intra coding has 33 

directional prediction models, much more complex than that in 

JPEG. In short, post-processing of video coding is much more 

complicated than JPEG images. But IFCNN is just a modification 

of ARCNN for video coding artifacts reduction, which leads to 

IFCNN not achieving very good results. 

Furthermore, Wu et al. [13] proposed a variable-filter-size 

residue-learning CNN (VRCNN), which variable filter size is 

proposed to suit for HEVC variable block size transform. By 

concatenating different-sized filters, network can provide multi-

level information of the input image. VRCNN adopts residual-

learning and gradient clipping, and makes a fast convergence speed. 
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VRCNN outperforms the previously studied ARCNN or VDSR 

[14], in achieving lower memory cost, and speedup deployment. 
More recently, Wang et al. [15] propose a decoder-side scalable 

CNN (DSCNN) approach to achieve quality enhancement for 

HEVC, which does not require any modification of the encoder. In 

DSCNN, a scalable structure with two sub-networks is designed to 

make a trade-off between computational complexity and quality 

enhancement.  
All these works seem to open up a new direction that adopts 

CNN into video coding to further improve the coding efficiency. 

Despite the remarkable progress, existing state-of-the-art methods 

cannot generate intermediate predictions at multiple refining levels. 

As a result, one needs to train a large variety of models for various 

applications with different desired quality enhancement and 

computational loads. To address these drawbacks, we propose the 

Multi-level Progressive Refinement Networks through an 

adversarial training approach (MPRGAN). The main contributions 

of this study as follows: 

1) We formulate a multi-level progressive refinement network 

(MPRGAN) for solving video post-processing tasks, through an 

adversarial training process, which can efficiently suppress various 

compression artifacts. 

2) A scalable structure is explicitly included in our MPRGAN, 

through progressively predicts the sub-band residues in a coarse-

to-fine fashion. Hence, the computational complexity and quality 

enhancement of our MPRGAN model is adjustable by simply 

bypassing the computation of residues at finer levels. This makes 

our MPRGAN can accommodate the computational resources of 

the hardware.   

3) Extensive experiments demonstrate the effectiveness of our 

MPRGAN over state-of-the-art methods [13, 15] both subjective 

and objective visual quality of the reconstructed intra frame 

through HEVC. 

The rest of the paper is organized as follows: Section 2 

illustrates our proposed MPRGAN architecture, with details of the 

implementation. In section 3, extensive experiments are conducted 

to evaluate MPRGAN. Finally, we conclude this work with some 

future directions in section 4. 

 

2. FRAMEWORK OF MPRGAN 
 

2.1 Network architecture 

We propose MPRGAN through an adversarial training approach, 

for artifacts reduction and coding efficiency improvement in intra 

frame coding. The MPRGAN does not require signaling bits by 

using the same trained weight in both encoder and decoder. Fig. 1 

illustrates the framework of the proposed MPRGAN, which is 

composed of two CNNs, i.e., the enhancement network E and the 

discriminative network D. We train the MPRGAN via adversarial 

training approach, enabling it has capable of modeling complex 

multi-modual distribution, thus to boost its performance, and to be 

able to generate sharper images. 

The enhancement network E is proposed to predict the residues 

between the original frame y (ground truth) and the input frame x 

(reconstructed through HEVC). The residues predicted by the 

multi-level modules are added back to the input, generate the 

enhanced frame ( )e E x . Following the design principle of VGG 

net [16], network E using a stack of Convolution-ReLU layers 

without BatchNorm. We pad zeros before convolutions to keep the 

sizes of all feature maps (including the output image) the same. 

Note that the output layer of the network E, 1×1 convolutional 

layers, does not use activation functions. 

The discriminative network D employs popular ResNet 

architecture that consists of Convolution-BatchNorm-LeakyReLU 

layers. E and D are trained in a competing fashion, discriminator D 

is trained to distinguish positive example |x y  and negative 

example |e y , where |   indicates channel-wise concatenation. In 

contrary, the enhancement network E tries to confuse the 

discriminative network D by generating more and more “realistic” 

samples. This minimax game can be formulated as 

( , ) [log ( | )] [log(1 ( ( ) | ))]max min y x
E D

U E D D x y D E x y  E E  （1） 
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Fig. 1: An overview of our MPRGAN, through progressively 

predicting the sub-band residuals in a coarse-to-fine fashion.  

 

2.2 Scalable structure of enhancement network E 

To meet the varying computational resources of different hardware, 

we propose MPRGAN, explicitly includes a scalable structure. 

Only a single complete model is trained, enhancement network E 

can achieve scalable quality enhancement, through progressively 

predicting the sub-band residues in a coarse-to-fine fashion.  

As shown in Fig. 1, we use a two-layer 3×3 convolution 

across 64 channels as the basic multi-level building module, and 

adopt switches  iS  to control the computational complexity of 

enhancement network E in deployment testing. At each level, we 

first apply a cascade of convolutional layers to extract feature maps. 

Then, we use 1×1 convolutional layers to predict the sub-band 

residues. Finally, the predicted residues at each level are utilized to 

enhance the reconstructed frame through additional operations. 

Note that switches  iS  decide whether to enable the 

convolutional layers of multi-level Si. Once the computational 

resources are not sufficient, the deeper multi-level layers switches 
 

N

i i L
S

  are turned off and bypassed, thereby only shallower 

convolution layers  
1

0

L

i i
S



  are used for refining the reconstructed 

frame. That is, the final enhance frame is: 

     
1

0

( ) ,   [1, ]
L

i
i

e E x x residue L N




                                    （2） 

When the computational resources are sufficient,  
1

N

i i
S

  are 

turned on, MPRGAN starts to progressively predict the sub-band 

residues in a coarse-to-fine fashion work, based on the multi-level 

residue  
0

N

i i
residue

  which is output from the 1×1 convolutional 

layers of enhancement network E. That is to say, once 
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computational resources are sufficient, the quality of refined 

images can be further enhanced. 

 

2.3 Loss functions 

By penalizing the discrepancy between the enhanced output frame 

and ground-truth frame, optimal MPRGAN can be trained to 

discover the mapping from the input compressed image with 

artifacts to the quality enhanced image.  

In our enhancement network E, multi-level mean squared error 

(MS-MSE) loss function is employed to calculate the discrepancy 

of the enhanced image and the original image, i.e., 

2

1 1

1
( )

MSE

W H
i i

wh wh
w h

L e y
WH  

                                              （3） 

i
MSE i MSE

i

L L                                                               （4） 

Where, function MSE

iL  measures the discrepancy between the ground 

truth frame y and multi-level enhanced frame ie  that generated by 

the shallower convolution layers  iS  of the enhancement network 

E. 0{ }N
i i   are hyper-parameters balancing the influence of N 

different sub-band residues. 

Based on the aforementioned adversarial loss and MSE loss, 

we develop the MPRGAN adversarial framework. Network E and 

D play a minimax game by optimizing different loss functions. The 

loss function of enhancement network L  and the loss function of 

discriminative network DL  are formally defined as 

log( ( ( ) | ))
MSE

i
i

i

L D E x y L                                     （5） 

log( ( | )) log(1 ( ( ) | ))DL D x y D E x y                              （6） 

These loss functions are minimized by stochastic gradient 

decent algorithm with the standard back-propagation. We learn the 

network E and D parameters by minimizing ( )EL   and ( )DL   

alternately.  

 

2.3 Implementation and training details 

Our training and validation sets are the same as VRCNN and 

DSCNN, which are selected from BSD500 database [17]. 

Specifically, VRCNN and DSCNN [15] were trained on the 400 

train and test images of the BSD500 dataset and tested on the 100 

remaining validation images. All training images are encoded by 

HEVC all intra (AI) mode, using HM 16.0 [18]. We decompose 

the ground-truth and HEVC reconstructed frames into image 

patches with the size of 32×32, using the stride of 16. Note, only 

the luminance channel is considered for training. 

We use the publicly available code of Caffe [19] for training 

MPRGAN, on a NVIDIA GeForce GTX 1060 graphical processing 

unit (GPU). For each QP, a separate network is trained out. We 

optimize the network parameters with Adam [20] for a total of 200 

epochs. Weight initialization using MSRA [21], momentum is set 

to 0.9, and weight decay is 0.0001. We start from a learning rate of 

10-3, and divided it following a linear decay over training iteration. 

 

3. EXPERIMENTAL RESULTS 
 

In this subsection, we evaluate the performance of quality 

enhancement of our MPRGAN, comparing with the latest state-of-

the-art methods [13][15]. We don’t evaluate the ARCNN [11] and 

VDSR [14], which have been beaten by the VRCNN and DSCNN.  

We integrate the enhancement network E into HM 16.0, and 

test our approach on test sequences from JCT-VC database [22]. 

Here, we trained an enhancement network E consists of 4 multi-

level modules  
3

0i i
S

 . Note that non-overlapping with the training 

and testing sets, this can more objectively reflect the 

generalizability of the trained network. For fair comparison, we use 

the same test set and test method as that in [15], and comparing 

with the original experimental results in [15]. The test set includes 

BQTerrace, BasketballDrive and Cactus from Class B, BQMall 

from Class C, BasketballPass from Class D and FourPeople, 

Johnny, Vidyo1 from Class E. Quality enhancement is measured by 

Y-PSNR improvement (ΔPSNR). 
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Fig. 2. Multi-level progressive refinement processing of network E. 

The top row presents the HEVC reconstructed image (left) and the 

multi-level enhanced result obtained by adding the sub residues 

estimated up to the input image. The second row presents the 

ground truth image (left) and the sub residuals predicted by 

intermediate multi-level layers. The magnitude of residue images 

has been scaled ×3 for display purpose. We encourage the reader 

to zoom-in onto the images to best view the fine details. 

Table 1. The quality enhancement (∆PSNR dB at QP42)  

and deployment time (seconds per CTU) of various methods. 

Network ∆PSNR 
Deployment time 

CPU time GPU time 

VRCNN 0.2928 0.1160 0.0190 

DSCNN 0.3504 0.5089 0.0908 

MPRGAN S0 0.2805 0.0630 0.0100 

MPRGAN S01 0.3501 0.1131 0.0183 

MPRGAN S012 0.3886 0.1652 0.0285 

MPRGAN S0123 0.4025 0.2270 0.0370 

 

3.2 Multi-level coarse-to-fine work fashion 

Enhancement network E employs a scalable structure, through 

progressively predicting the sub-band residues in a coarse-to-fine 

fashion. Fig. 2 illustrates the multi-level progressive prediction 

process of enhancement network E. One insight is that each layer 

in the network E removes part of the artifacts in the image, rather 

than removing it all at once at the end of the network E. It can be 

observed from Fig. 2 that, the multi-level layer S0 can deal with 

most of obvious artifacts. While deeper multi-level layers, e.g. S3, 

mainly focus on recovering and enhancing the details and textures. 

This may be explained by the fact that the deeper layers correspond 

to a larger receptive field, and therefore may refine in a better way 

of global pattern. Such as details that may be indistinguishable 

from artifacts if viewed just in the context of a small local patch. 

We also compare the computational complexity of different 

networks. The quality enhancement and the networks deployment 

time are summarized in Table 1; these results are the average 

results of all test sequences. “MPRGAN S0” indicates the network 

E with deeper multiple layers switches  
3

1i i
S

  are turned off, and 

only shallower convolution layers S0 are used for refining the 
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reconstructed frame. “MPRGAN S0123” indicate the network E with 

deeper multiple layers  
3

0i i
S

  are used for refining the reconstructed 

frame. Overall, only needing to train a single complete model 

“MPRGAN S0123”, enhancement network E can achieve scalable 

quality enhancement, through turn off and bypassing the deeper 

multi-level layers. It can be seen from Table 1 and Fig. 3 that, from 

“MPRGAN S0” to “MPRGAN S0123”, with the increase of 

computing resources, our MPRGAN network can boost the quality 

of enhancement continually. 

It can be seen from Table 1, our MPRGAN S01 achieves 19.5% 

extra PSNR improvement comparing with VRCNN, with the 

similar computational complexity. While our MPRGAN S0123 

achieves up to 37.5% extra PSNR improvement comparing with 

VRCNN, at the cost of ∼1.0 times increment of computational 

complexity. Comparing with DSCNN, our MPRGAN S01 saves 

77.6% computational complexity, with the analogous quality 

enhancement. While our MPRGAN S0123 outperforms the DSCNN 

by a large margin both in quality enhancement and deploy speed. 

 

Fig. 3. Deployment speed vs. refinement quality. 

 

Table 2. Performance of various methods (∆PSNR dB)  

QP  Class Sequence VRCNN DSCNN MPRGAN 

42 

B BQTerrace 0.3127 0.3789 0.3978 

B Cactus 0.1754 0.2001 0.2298 

B BaskeballDrive 0.1776 0.2281 0.2849 

C BQMall 0.2946 0.3433 0.3971 

D RaceHorses 0.4117 0.4320 0.5808 

E FourPeople 0.4060 0.4791 0.5124 

E Johnny 0.2823 0.3363 0.3881 

E Vidyo1 0.3619 0.4086 0.4290 

Average 0.2928 0.3504 0.4025 

47 Average 0.2940 0.3413 0.4001 

 

3.3 Performance of quality enhancement for HEVC 

Performance of objective quality. It can be seen from Table 2, 

the proposed MPRGAN obviously outperforms DSCNN and 

VRCNN over all test sequences. At QP = 42, the averaged ΔPSNR 

(0.4025 dB) of our MPRGAN is 14.9% higher than DSCNN 

(0.3504 dB) and 37.5% higher than VRCNN (0.2928 dB). In 

particular, MPRGAN achieves up to 0.5808 dB, while the highest 

improvements of DSCNN and VRCNN are 0.4791 dB and 0.3612 

dB, respectively. Similar results also can be found at QP = 47. In 

summary, our proposed MPRGAN performs best in quality 

enhancement of HEVC intra coding among three approaches. 

Performance of subjective quality. We also compare the 

visual quality of refined images as shown in Fig. 4. In contrast to 

Fig. 4(a), (b) and (c), we can observe that image processed by the 

original DF and SAO filter in HEVC baseline, greatly reduces 

blocking at smooth regions, but in-sufficient largely along edges 

and high-frequency regions. From Fig. 4(d) and (e), we can 

observe that VRCNN and DSCNN effectively reduce the most 

artifacts caused by HEVC compression, and produces better visual 

quality than HEVC baseline. From Fig. 4(f), we could see that the 

result of our MPRGAN could produce much sharper edges with 

much less blocking and ringing artifacts compared with VRCNN 

and DSCNN, contrast along edges is better enhanced. Hence, the 

effectiveness of our MPRGAN for video coding quality 

enhancement can be validated. 

 

4. CONCLUSION AND FUTURE WORK 
 

In this paper, we propose a novel multi-level progressive 

refinement network with an adversarial training approach 

(MPRGAN) for video coding post-processing. We also designed a 

scalable structure in our MPRGAN for achieving the trade-off 

between quality enhancement and computational complexity, 

which improves the flexibility of our MPRGAN and makes it 

adjustable to the resource-aware applications. The proposed 

network MPRGAN shown to reduce artifacts in a coarse-to-fine 

work fashion, and outperforms other state-of-the-art quality 

enhancement approaches on the HEVC standard test dataset. Our 

future work is planned to further simplify the network while 

boosting its visual quality, and aim to extend the methodology to 

more related applications. 
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(a) Ground-truth                (b) Before post-processing, 27.5849 dB 原图

 

原图

 
(c) HEVC baseline, 27.7746 dB              (d) VRCNN, 28.2565 dB 原图

 

原图

 
(e) DSCNN, 28.3021 dB              (f) MPRGAN (ours), 28.3554dB 

Fig. 4. The first frame of class D RaceHorses, encoded by HEVC 

at QP 42, and post-processed by HEVC baseline as well as 

different learning methods. This figure is best zoom in to see 

details on the screen. 
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