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ABSTRACT

In this paper, we propose a novel low-rank tensor completion
(LRTC) model under the circulant algebra for color image in-
painting, which simultaneously preserves the low-rank struc-
tures of images, and also explore the local smooth and piece-
wise priors of the images in the spatial domain. First, color
images are naturally represented by 3-order tensors which p-
reserve the intrinsic structures of color images. Second, we
preserve the low-rank structures of these tensors with tensor
nuclear norm, which can simultaneously exploit the correla-
tions among the spatial and channel domains. Third, we in-
tegrate an anisotropic total variation into our low-rank ten-
sor completion model, which preserve the local smooth and
piecewise priors of color images. Then, an efficient alternat-
ing direction method of multipliers (ADMM) is proposed to
solve the resulting optimization problem. Experimental re-
sults on eight widely used color images demonstrate the ef-
fectiveness and superiority of the proposed algorithm.

Index Terms — Low-rank tensor completion, tensor nucle-
ar norm, anisotropic total variation.

1. INTRODUCTION

As a generalization of matrices and vectors, tensors are multi-
dimensional array of numbers, which are natural form of
multi-dimensional real world data. For example, color images
and gray videos can be represented as 3-order tensors, where
the three dimensions are height, width and color channel
(temporal frame). Due to loss of information or unacceptable
cost to acquire complete data, tensors used for real-world ap-
plications may contain missing values. Thus, completing the
values for missing values, namely tensor completion problem,
is of great importance for the real applications. Low-rank ten-
sor completion (LRTC), which reveals the inherent structures
of multi-dimensional data, has received considerable atten-
tions, and been applied to many areas, such as computer
vision [1], signal processing [2] and data mining [3].

Recent researches demonstrate the advantages of LRTC
for the multi-dimensional data completion [4-9]. However,
the rank of a tensor is not well-defined. Existing LRTC meth-
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ods can be roughly broken down into three categories. The
first category is based on CANDECOMP/PARAFAC (CP)
[10] and the low rank of a tensor is defined as the minimum
of rank 1 CP decomposition components. whereas, it is hard
to determine, or even estimate, the rank of a tensor for real
tensors [11, 12]. The second category is based on Tucker
decomposition and the low-rank is commonly defined as the
sum of nuclear norm (SNN) of unfolding matrices [4]. Due to
the definition of Tucker decomposition, SNN does not exploit
the correlations between different modes. Moreover, SNN
tries to model the tensor in the matrix SVD-based vector s-
pace, which results in loss of optimality in the representation.
The third category is based on the recently proposed t-SVD
decomposition [13] and the low rank is defined as tensor
nuclear norm (TNN)/ tensor tubal rank [6, 7]. Since t-SVD
is based on an operator theoretic interpretation of 3-order
tensors as linear operators on the space of oriented matrices,
the tensor multi-rank and tubal rank can well characterize
the inherent low-rank structure of a tensor while avoiding the
loss of information inherent in matricization of the tensor [6].
In this paper, we focus on the tensor nuclear norm for the
low-rank tensor completion.

Though the low-rank constraint is useful for the tensor
completion, it is not efficient enough to exploit the local s-
mooth and piecewise priors of the local structures in color
images. As well known, color images, especially in the spa-
tial domain, exhibits smooth and piecewise structures, due to
objects or edges therein. Without considering such priors, the
inpainting results may be unsatisfactory. Total variation (TV),
a well-known norm to preserve piecewise smooth priors, has
been successfully applied to image/video restorations [14]. In
this paper, we propose to incorporate an anisotropic total vari-
ation into tensor recovery, which focuses on exploiting the lo-
cal piecewise smooth structures in the spatial domain. The
contributions are summarized as follows:

e We propose a novel low-rank tensor completion model,
which simultaneously preserves the low-rank structures
of images, but also exploit the local smooth and piece-
wise priors of the images in the spatial domain

e An efficient alternating direction method of multiplier-
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s (ADMM) is proposed for solving the resulting opti-
mization problems.

e Experimental results on 8 widely used color images
demonstrated the effectiveness of our algorithms.

2. NOTATIONS AND PRELIMINARIES

We briefly introduce the notations and preliminaries through-
out the paper. We use boldface capital letters for matrices,
boldface lowercase letters for vectors, and lowercase for s-
calars. We denote a 3-order tensor by X € R™*n"2Xns jtg
ij¢-th element by X;;y, its frontal slice by X(*) = X (:,:, ¢),
and the mode-¢ unfolded matrix by X(@), which is formed
by arranging all the mode-¢ fibers as columns of the matrix.
The Fourier transform of X along the third dimension is de-
noted as X = fft(X,[],3). The ¢; norm of tensor X is
[X[le, = >_;.¢|Xije| and the Frobenius norm is || X|[r =

A/ Zi,j,é Xije.
To construct our model based on tensor nuclear nor-
m, it is necessary to introduce three block-based opera-

tors, i.e., beirc(+), bvec(-), and bvfold(-), in advance. For
X 6 Rnlxan’l’L3,

x@ X (ns) X2
x@ x x3)
beirc(X) = ) . . . ;o (D
y(ns)  plns—1) Pt
and the block vectorizing and its opposite operation
XM
X
bvec(X) := ) , bvfold(bvec(X)) =X, (2)
X(.ns)

where beirc(X') is of size ning X naons, and bvec(X) is
ning X ny. The t-product between two 3-order tensors can
then be defined as follows [7, 13, 15].

Definition 1 Ler A be ny X r X n3 and B be r X ny X ns,
the t-product A x B is the order-3 tensor of size n1 X na X ng,
where

X = A« B = bvfold (bcirc(A) - bvec(B)) , 3)
where - denotes the standard matrix multiplication.

Definition 2 Given a 3-order tensor X € R™X"2Xn3  the
t-SVD of X is given by

X:U*S*VT, 4)

where U € R™*™"3 gnd VYV € R"2*"*"s qre orthogonal
tensors which satisfy UT xU = T and V x VI = I. T is the
identity tensor whose frontal slices are all zeros except the
first one an identity matrix. § € R"*"*"3 s a tensor whose
frontal slices are diagonal matrices.

x® I ) [eaa | 2@

@ | x® s X9
|

X("j\,‘ | {:tl(ﬂg 4] AJ'(D

bCil‘C(X) € R™M ™M Xy

Fig. 1. Formulation of bcirc(X'). The dash block part is actu-
ally the unfolding matrix of X’ along the second mode X 3).

Definition 3 The tensor nuclear norm of X € R *"2x"3 jg
defined as

ns min{ni,na}

IXle =" > |Sul- (5)
/=1 =1

3. OUR MODEL

We first present the motivation for our model. Then we intro-
duce our model followed by an efficient algorithm. After that,
the computational complexity is analyzed.

3.1. Motivation

The task of tensor completion is to fill in the missing values
of a tensor X € R™*"2%"s ynder a given subset (2. Since
tensor data of high dimensional are usually underlying low-
rank [16], tensor completion problem can be written as:

mZinrankt(Z), s.t.[Z]a = [X]a, (6)

where rank; is the rank of tensor Z. However, minimizing
rank;(Z) is complex. [15] and [7] replace rank;(Z) as the
tensor nuclear norm (TNN), and achieve the state-of-the-art 3-
order tensor completion results. Unlike SNN, TNN can well
characterize the inherent low-rank structure of a tensor. Lem-
ma 1 shows the equivalence of TNN in the real domain.

Lemma 1 [6] Given X € R™*"2X"s e have || X|e =
lbcire(X)]] .

As shown in Figure 1 , the equivalent formulation of TNN,
i.e., beirc(X), not only capture the low-rank structures of the
unfolding matrix X 3), but also captures the correlations be-
tween different modes. Therefore, TNN can characterize the
inherent low-rank structures of a tensor without the loss of
information inherent in matricization of the tensor.

On the other hand, many real world data show a local s-
mooth and piecewise characteristic, such as the spatial dimen-
sions of color images. The total variation (TV) norm is an
appropriate choice to measure the piecewise smoothness of
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Algorithm 1 Algorithms for our model.

Input: an incomplete tensor X', iteration number k&, parame-
ters A, {p; }_, and p € [1.1,1.5],

1: Set randomly initialize {Q;, R;}3_;, M, Z = X

2: for: =1tokdo

3. Update {Q;,R;}7_;, M, Z = X as (12), (14), (15)
and (17).
A = Ai+p1(Qi —FiRy), ®; = @i+ p2(Ri — Z(y),
F=T+4ps(M = 2), p; = pups,i =1,2,3.

5: end for
Output: Z.

»

signals. An anisotropic total variation norm of a 3-order ten-
sor X € R™"*"2x"s jgused in our paper, with the following
definition:

3
XNy = BillFiZs (7

i=1
where F; is a (n; — 1)-by-n; matrix, where [F;];;, = 1,
[Filii+1 = —1, and the other entries are zeros. [3; is 0 or

1, which indicates whether we have a smooth and piecewise
prior on the ¢-th mode of the recovered tensor. The setting of
B is domain dependent. For example, when X represents a
color image, we set 81 = B2 = 1 and 83 = 0, due to the
smooth and piecewise priors existing only in spatial domain.

3.2. TV Regularized Low-rank Tensor Completion

As previous discussion, we propose a novel low-rank comple-
tion model, which combines TNN and anisotopic total varia-
tion regularization, aiming at extracting intrinsic structures of
visual data and exploiting the local smooth and piecewise pri-
ors, simultaneously.

Given an incomplete tensor X' € R™*"2%"s with (3 indi-
cating the set of indices of observations, the tensor completion
problem is defined as follows:

P
i AN BilFZys z
min, ;BH ol +1Zle

st. [Zla = [X]a, ®)

where ) is a tunable parameter, balancing the TV regulariza-
tion and the fidelity term.

By introducing three auxiliary variables, we rewrite (16)
as the following equivalent minimization problem:

P
min /\Zﬁi“QiHl""HM”@

Z,A.B

i=1
M=Z,
Z]a = [X]a,

Based on the augmented Lagrange methodology, problem (9)
is changed into:

3
A;
=3 o (MQil+ 5 je - FiRe+ 2213 )
=1

3
P2 P; 10
# Y oe (ZIR -z + 2412 (10
i=1 P2
p3 I' o
Mg + FIM =2+ —[F,
P3

under the constraint [Z]q = [X]q. Matrices {A;}3_;,

{®;}3_, and T are Lagrange multipliers.

Next, we derive the updating rules of {Q;}7_;, {R;}7_;,
M and Z by fixing the other variables as follows: For Q;, if
Bi=1

. A;
Q; = argmin A|Qills + 2Q; — FiR; + ~[|3, (1)
Qi 2 P1
which has a closed-form solution as:

Qi=Pxr <FiRi - A7> ) (12)
. P1

where P, (-) is the elementwise shrinkage-thresholding oper-

ator, i.e. P, (X) = sign(X) ® max(X — «a,0), and sign(-) is

the sign function, and ©® is the element-wise multiplication.
Similarly, if 5; = 1,

Ri = argmin p1 | Qi PR+ [t pa [ R~ Z - [

R; P1 P2

(13)
and the closed-form solution is

R; = (F/FitpD) YFLA A0 FLQ,+p2Zi—®;) (14)
And,

. p3 r
= —= —Z 4+ —|%. 15
M=argmip|Mlls + 2 M -2+ LIE a3

(15) can be solved by Tensor Singular Value Convoluting
(TSVC) [15] using t-SVD. And,

3
. P2 P, 2)
min i | =R — Zyy + —
i ;:15 (2” W+ 17

r
+2 M =2+ |, (16)
P3

s.t. [Z]Q = [X]Q,
The update formulae of Z are computed as:

S0, Bi(fold;(®; + p2R;)) + psM + T
p3 + Zle Bip2

[Z]a = [

Q
a7)
and [Z]qo = [V]q With these update formulae, the algorithm
for (9) are summarized in Algorithm 1.
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Fig. 2. Visual comparison of different methods on color image inpainting. Each row denotes the results of different methods

on barbara and house with missing rates being 90%.

4. EXPERIMENTAL RESULTS

We conduct experiments of the RGB-color images recovery
to demonstrate the effectiveness of the proposed algorithm-
s. We compare with four state-of-the-art LRTC algorithms,
including tucker-decomposition based algorithms, i.e., STDC
[5] and LRTC-TV [4], and two t-SVD based algorithms, i.e.,
GTNN [15] and TRPCA [7]. The parameters in those com-
pared methods were manually adjusted according to their de-
fault strategies. The experimental results are evaluated by the
peak signal-to-noise ratio (PSNR), and the relative squared er-
ror (RSE), which are widely used in the visual data inpainting
tasks.

ningnz|| X%,
12 - X%

12 - X|r

, RSE =

where X and Z represent the ground-truth tensor and the re-
covered tensor, respectively. || X|o denotes the maximum
value in the ground-truth tensor.

4.1. Color Image Inpainting

Figure 2 shows the ground-truth of eight images used for the
experiment. The size of each image is 256 x 256 x 3, which is
represented as a 256-by-256-by-3 tensor. We randomly mask
off 60%, 70%, 80%, 90% entries in each image, and regard
them as missing values. We record the PSNR of the eight
images, and compare the inpainting results quantitatively and
visually.

Table 1 presents the performance of all the compared
methods. From Table 1, we can see that: (i) our model out-
performs other algorithms in all the cases; (ii) TV regularized
algorithms, ours and LRTC-TV can recovery the color im-
ages better than those without TV regularization; (iii) TNN
norm can more efficient exploit the low-rank structures of the
color images, since TNN based algorithms, i.e., TRPCA and
GTNN works better than STDC.

Table 1. Average performance evaluation on 8 color images
with MPSNR (dB) and MSSIM.

Ratio Metrics STDC LRTC-TV TRPCA GTNN Ours

04 PSNR 2584  28.49 27.64 27.48  29.10
) RSE 0.0938 0.0683 0.0768  0.0782  0.0644

03 PSNR 2438  26.65 25.40 25.18  27.28
) RSE 0.1105 0.0838 0.0989  0.1013  0.0788

02 PSNR 2275  24.49 22.80 2273 2511
) RSE 0.1327 0.1065 0.1325  0.1338  0.0999

01 PSNR 19.90  21.12 18.90 1938  21.87
) RSE 0.1827 0.1561 02063  0.1955 0.1435

To make a further investigation and comparison, we vi-
sualize the recovered results of some examples in Figure
2 We can see that, with the total variation constraint, both
our method and LRTC-TV obtain more clear objects and
smoother pictures.

5. CONCLUSIONS

In this paper, we present a novel TV regularized tensor low-
rank method based on tensor nuclear norm for color image
recovery. In our model, the tensor nuclear norm is utilized
to describe the global spatial-and-channel correlation, and an
anisotropic spatial-spectral total variation regularization is de-
signed to characterize the piecewise smooth structure in the
spatial domain. The effectiveness of the proposed algorithm
are demonstrated by color image inpainting task, and the ad-
vantages of TNN and TV regularization are explicitly shown.
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