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ABSTRACT

In this paper, we propose a novel low-rank tensor completion
(LRTC) model under the circulant algebra for color image in-
painting, which simultaneously preserves the low-rank struc-
tures of images, and also explore the local smooth and piece-
wise priors of the images in the spatial domain. First, color
images are naturally represented by 3-order tensors which p-
reserve the intrinsic structures of color images. Second, we
preserve the low-rank structures of these tensors with tensor
nuclear norm, which can simultaneously exploit the correla-
tions among the spatial and channel domains. Third, we in-
tegrate an anisotropic total variation into our low-rank ten-
sor completion model, which preserve the local smooth and
piecewise priors of color images. Then, an efficient alternat-
ing direction method of multipliers (ADMM) is proposed to
solve the resulting optimization problem. Experimental re-
sults on eight widely used color images demonstrate the ef-
fectiveness and superiority of the proposed algorithm.

Index Terms – Low-rank tensor completion, tensor nucle-
ar norm, anisotropic total variation.

1. INTRODUCTION

As a generalization of matrices and vectors, tensors are multi-
dimensional array of numbers, which are natural form of
multi-dimensional real world data. For example, color images
and gray videos can be represented as 3-order tensors, where
the three dimensions are height, width and color channel
(temporal frame). Due to loss of information or unacceptable
cost to acquire complete data, tensors used for real-world ap-
plications may contain missing values. Thus, completing the
values for missing values, namely tensor completion problem,
is of great importance for the real applications. Low-rank ten-
sor completion (LRTC), which reveals the inherent structures
of multi-dimensional data, has received considerable atten-
tions, and been applied to many areas, such as computer
vision [1], signal processing [2] and data mining [3].

Recent researches demonstrate the advantages of LRTC
for the multi-dimensional data completion [4–9]. However,
the rank of a tensor is not well-defined. Existing LRTC meth-

ods can be roughly broken down into three categories. The
first category is based on CANDECOMP/PARAFAC (CP)
[10] and the low rank of a tensor is defined as the minimum
of rank 1 CP decomposition components. whereas, it is hard
to determine, or even estimate, the rank of a tensor for real
tensors [11, 12]. The second category is based on Tucker
decomposition and the low-rank is commonly defined as the
sum of nuclear norm (SNN) of unfolding matrices [4]. Due to
the definition of Tucker decomposition, SNN does not exploit
the correlations between different modes. Moreover, SNN
tries to model the tensor in the matrix SVD-based vector s-
pace, which results in loss of optimality in the representation.
The third category is based on the recently proposed t-SVD
decomposition [13] and the low rank is defined as tensor
nuclear norm (TNN)/ tensor tubal rank [6, 7]. Since t-SVD
is based on an operator theoretic interpretation of 3-order
tensors as linear operators on the space of oriented matrices,
the tensor multi-rank and tubal rank can well characterize
the inherent low-rank structure of a tensor while avoiding the
loss of information inherent in matricization of the tensor [6].
In this paper, we focus on the tensor nuclear norm for the
low-rank tensor completion.

Though the low-rank constraint is useful for the tensor
completion, it is not efficient enough to exploit the local s-
mooth and piecewise priors of the local structures in color
images. As well known, color images, especially in the spa-
tial domain, exhibits smooth and piecewise structures, due to
objects or edges therein. Without considering such priors, the
inpainting results may be unsatisfactory. Total variation (TV),
a well-known norm to preserve piecewise smooth priors, has
been successfully applied to image/video restorations [14]. In
this paper, we propose to incorporate an anisotropic total vari-
ation into tensor recovery, which focuses on exploiting the lo-
cal piecewise smooth structures in the spatial domain. The
contributions are summarized as follows:

• We propose a novel low-rank tensor completion model,
which simultaneously preserves the low-rank structures
of images, but also exploit the local smooth and piece-
wise priors of the images in the spatial domain

• An efficient alternating direction method of multiplier-
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s (ADMM) is proposed for solving the resulting opti-
mization problems.

• Experimental results on 8 widely used color images
demonstrated the effectiveness of our algorithms.

2. NOTATIONS AND PRELIMINARIES

We briefly introduce the notations and preliminaries through-
out the paper. We use boldface capital letters for matrices,
boldface lowercase letters for vectors, and lowercase for s-
calars. We denote a 3-order tensor by X ∈ Rn1×n2×n3 , its
ij`-th element by Xij`, its frontal slice by X (`) = X (:, :, `),
and the mode-` unfolded matrix by X(`), which is formed
by arranging all the mode-` fibers as columns of the matrix.
The Fourier transform of X along the third dimension is de-
noted as X̂ = fft(X , [ ], 3). The `1 norm of tensor X is
‖X‖`1 =

∑
i,j,` |Xij`| and the Frobenius norm is ‖X‖F =√∑

i,j,` Xij`.
To construct our model based on tensor nuclear nor-

m, it is necessary to introduce three block-based opera-
tors, i.e., bcirc(·), bvec(·), and bvfold(·), in advance. For
X ∈ Rn1×n2×n3 ,

bcirc(X ) :=


X (1) X (n3) · · · X (2)

X (2) X (1) · · · X (3)

...
...

. . .
...

X (n3) X (n3−1) · · · X (1)

 , (1)

and the block vectorizing and its opposite operation

bvec(X ) :=


X (1)

X (2)

...
X (n3)

 , bvfold(bvec(X )) = X , (2)

where bcirc(X ) is of size n1n3 × n2n3, and bvec(X ) is
n1n3 × n2. The t-product between two 3-order tensors can
then be defined as follows [7, 13, 15].

Definition 1 Let A be n1 × r × n3 and B be r × n2 × n3,
the t-productA∗B is the order-3 tensor of size n1×n2×n3,
where

X = A ∗ B = bvfold (bcirc(A) · bvec(B)) , (3)

where · denotes the standard matrix multiplication.

Definition 2 Given a 3-order tensor X ∈ Rn1×n2×n3 , the
t-SVD of X is given by

X = U ∗ S ∗ V†, (4)

where U ∈ Rn1×r×n3 and V ∈ Rn2×r×n3 are orthogonal
tensors which satisfy U† ∗ U = I and V ∗ V† = I. I is the
identity tensor whose frontal slices are all zeros except the
first one an identity matrix. S ∈ Rr×r×n3 is a tensor whose
frontal slices are diagonal matrices.

Fig. 1. Formulation of bcirc(X ). The dash block part is actu-
ally the unfolding matrix of X along the second mode X(2).

Definition 3 The tensor nuclear norm of X ∈ Rn1×n2×n3 is
defined as

‖X‖~ :=

n3∑
`=1

min{n1,n2}∑
i=1

|Ŝii`|. (5)

3. OUR MODEL

We first present the motivation for our model. Then we intro-
duce our model followed by an efficient algorithm. After that,
the computational complexity is analyzed.

3.1. Motivation

The task of tensor completion is to fill in the missing values
of a tensor X ∈ Rn1×n2×n3 under a given subset Ω. Since
tensor data of high dimensional are usually underlying low-
rank [16], tensor completion problem can be written as:

min
Z

rankt(Z), s.t.[Z]Ω = [X ]Ω, (6)

where rankt is the rank of tensor Z . However, minimizing
rankt(Z) is complex. [15] and [7] replace rankt(Z) as the
tensor nuclear norm (TNN), and achieve the state-of-the-art 3-
order tensor completion results. Unlike SNN, TNN can well
characterize the inherent low-rank structure of a tensor. Lem-
ma 1 shows the equivalence of TNN in the real domain.

Lemma 1 [6] Given X ∈ Rn1×n2×n3 , we have ‖X‖~ =
‖bcirc(X )‖∗.

As shown in Figure 1 , the equivalent formulation of TNN,
i.e., bcirc(X ), not only capture the low-rank structures of the
unfolding matrix X(2), but also captures the correlations be-
tween different modes. Therefore, TNN can characterize the
inherent low-rank structures of a tensor without the loss of
information inherent in matricization of the tensor.

On the other hand, many real world data show a local s-
mooth and piecewise characteristic, such as the spatial dimen-
sions of color images. The total variation (TV) norm is an
appropriate choice to measure the piecewise smoothness of

1364



Algorithm 1 Algorithms for our model.
Input: an incomplete tensor X , iteration number k, parame-

ters λ, {ρi}3i=1 and µ ∈ [1.1, 1.5] ,
1: Set randomly initialize {Qi,Ri}3i=1,M, Z = X
2: for i = 1 to k do
3: Update {Qi,Ri}3i=1, M, Z = X as (12), (14), (15)

and (17).
4: Λi = Λi+ρ1(Qi−FiRi), Φi = Φi+ρ2(Ri−Z(i)),

Γ = Γ + ρ3(M−Z), ρi = µρi, i = 1, 2, 3.
5: end for

Output: Z .

signals. An anisotropic total variation norm of a 3-order ten-
sor X ∈ Rn1×n2×n3 is used in our paper, with the following
definition:

‖X‖TV =
3∑
i=1

βi‖FiZ(i)‖1, (7)

where Fi is a (ni − 1)-by-ni matrix, where [Fi]i,i = 1,
[Fi]i,i+1 = −1, and the other entries are zeros. βi is 0 or
1, which indicates whether we have a smooth and piecewise
prior on the i-th mode of the recovered tensor. The setting of
βi is domain dependent. For example, when X represents a
color image, we set β1 = β2 = 1 and β3 = 0, due to the
smooth and piecewise priors existing only in spatial domain.

3.2. TV Regularized Low-rank Tensor Completion

As previous discussion, we propose a novel low-rank comple-
tion model, which combines TNN and anisotopic total varia-
tion regularization, aiming at extracting intrinsic structures of
visual data and exploiting the local smooth and piecewise pri-
ors, simultaneously.

Given an incomplete tensor X ∈ Rn1×n2×n3 with Ω indi-
cating the set of indices of observations, the tensor completion
problem is defined as follows:

min
Z,A,B

λ

p∑
i=1

βi‖FiZ(i)‖1 + ‖Z‖~

s.t. [Z]Ω = [X ]Ω, (8)

where λ is a tunable parameter, balancing the TV regulariza-
tion and the fidelity term.

By introducing three auxiliary variables, we rewrite (16)
as the following equivalent minimization problem:

min
Z,A,B

λ

p∑
i=1

βi‖Qi‖1 + ‖M‖~

s.t. {Qi = FiRi,Ri = Z(i)}3i=1, (9)
M = Z,
[Z]Ω = [X ]Ω,

Based on the augmented Lagrange methodology, problem (9)
is changed into:

L =

3∑
i=1

βi ·
(
λ‖Qi‖1 +

ρ1

2
‖Qi − FiRi +

Λi

ρ1
‖2F
)

+

3∑
i=1

βi ·
(
ρ2

2
‖Ri − Z(i) +

Φi

ρ2
‖2F
)

+ ‖M‖~ +
ρ3

2
‖M−Z +

Γ

ρ3
‖2F ,

(10)

under the constraint [Z]Ω = [X ]Ω. Matrices {Λi}3i=1,
{Φi}3i=1 and Γ are Lagrange multipliers.

Next, we derive the updating rules of {Qi}pi=1, {Ri}pi=1,
M and Z by fixing the other variables as follows: For Qi, if
βi = 1

Qi = arg min
Qi

λ‖Qi‖1 +
ρ1

2
‖Qi − FiRi +

Λi

ρ1
‖2F , (11)

which has a closed-form solution as:

Qi = P λ
ρ1

(
FiRi −

Λi

ρ1

)
, (12)

where Pα(·) is the elementwise shrinkage-thresholding oper-
ator, i.e. Pα(X) = sign(X)�max(X− α, 0), and sign(·) is
the sign function, and � is the element-wise multiplication.

Similarly, if βi = 1,

Ri = arg min
Ri

ρ1‖Qi−FiRi+
Λi

ρ1
‖2F+ρ2‖Ri−Z(i)+

Φi

ρ2
‖2F ,
(13)

and the closed-form solution is

Ri = (FTi Fi+ρ2I)−1(FTnΛn+ρ1F
T
nQn+ρ2Zi−Φi) (14)

And,

M = arg min
M
‖M‖~ +

ρ3

2
‖M−Z +

Γ

ρ3
‖2F . (15)

(15) can be solved by Tensor Singular Value Convoluting
(TSVC) [15] using t-SVD. And,

min
Z

3∑
i=1

βi ·
(
ρ2

2
‖Ri − Z(i) +

Φi

ρ2
‖2F
)

+
ρ3

2
‖M−Z +

Γ

ρ3
‖2F , (16)

s.t. [Z]Ω = [X ]Ω,

The update formulae of Z are computed as:

[Z]Ω =

[∑3
i=1 βi(foldi(Φi + ρ2Ri)) + ρ3M+ Γ

ρ3 +
∑3
i=1 βiρ2

]
Ω
(17)

and [Z]Ω = [Y]Ω With these update formulae, the algorithm
for (9) are summarized in Algorithm 1.
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Observations STDC LRTC-TV TRPCAGTNN Ours

Fig. 2. Visual comparison of different methods on color image inpainting. Each row denotes the results of different methods
on barbara and house with missing rates being 90%.

4. EXPERIMENTAL RESULTS

We conduct experiments of the RGB-color images recovery
to demonstrate the effectiveness of the proposed algorithm-
s. We compare with four state-of-the-art LRTC algorithms,
including tucker-decomposition based algorithms, i.e., STDC
[5] and LRTC-TV [4], and two t-SVD based algorithms, i.e.,
GTNN [15] and TRPCA [7]. The parameters in those com-
pared methods were manually adjusted according to their de-
fault strategies. The experimental results are evaluated by the
peak signal-to-noise ratio (PSNR), and the relative squared er-
ror (RSE), which are widely used in the visual data inpainting
tasks.

PSNR = 10 log10

n1n2n3‖X‖2∞
‖Z − X‖2F

, RSE =
‖Z − X‖F
‖X‖F

.

where X and Z represent the ground-truth tensor and the re-
covered tensor, respectively. ‖X‖∞ denotes the maximum
value in the ground-truth tensor.

4.1. Color Image Inpainting

Figure 2 shows the ground-truth of eight images used for the
experiment. The size of each image is 256×256×3, which is
represented as a 256-by-256-by-3 tensor. We randomly mask
off 60%, 70%, 80%, 90% entries in each image, and regard
them as missing values. We record the PSNR of the eight
images, and compare the inpainting results quantitatively and
visually.

Table 1 presents the performance of all the compared
methods. From Table 1, we can see that: (i) our model out-
performs other algorithms in all the cases; (ii) TV regularized
algorithms, ours and LRTC-TV can recovery the color im-
ages better than those without TV regularization; (iii) TNN
norm can more efficient exploit the low-rank structures of the
color images, since TNN based algorithms, i.e., TRPCA and
GTNN works better than STDC.

Table 1. Average performance evaluation on 8 color images
with MPSNR (dB) and MSSIM.

Ratio Metrics STDC LRTC-TV TRPCA GTNN Ours

0.4 PSNR 25.84 28.49 27.64 27.48 29.10
RSE 0.0938 0.0683 0.0768 0.0782 0.0644

0.3 PSNR 24.38 26.65 25.40 25.18 27.28
RSE 0.1105 0.0838 0.0989 0.1013 0.0788

0.2 PSNR 22.75 24.49 22.80 22.73 25.11
RSE 0.1327 0.1065 0.1325 0.1338 0.0999

0.1 PSNR 19.90 21.12 18.90 19.38 21.87
RSE 0.1827 0.1561 0.2063 0.1955 0.1435

To make a further investigation and comparison, we vi-
sualize the recovered results of some examples in Figure
2 We can see that, with the total variation constraint, both
our method and LRTC-TV obtain more clear objects and
smoother pictures.

5. CONCLUSIONS
In this paper, we present a novel TV regularized tensor low-
rank method based on tensor nuclear norm for color image
recovery. In our model, the tensor nuclear norm is utilized
to describe the global spatial-and-channel correlation, and an
anisotropic spatial-spectral total variation regularization is de-
signed to characterize the piecewise smooth structure in the
spatial domain. The effectiveness of the proposed algorithm
are demonstrated by color image inpainting task, and the ad-
vantages of TNN and TV regularization are explicitly shown.

Acknowledgements
The research was supported by NSFC (No. 61671290), the
Key Program for International S&T Cooperation Project of
China (No. 2016YFE0129500), and Shanghai Committee of
Science and Technology (No. 17511101903).

1366



References
[1] Chengcheng Jia, Guoqiang Zhong, and Yun Raymond

Fu, “Low-rank tensor learning with discriminant anal-
ysis for action classification and image recovery.,” in
AAAI, 2014, pp. 1228–1234.

[2] Donald Goldfarb and Zhiwei Qin, “Robust low-rank
tensor recovery: Models and algorithms,” SIAM Journal
on Matrix Analysis and Applications, vol. 35, no. 1, pp.
225–253, 2014.

[3] Tamara G Kolda and Jimeng Sun, “Scalable tensor
decompositions for multi-aspect data mining,” in Da-
ta Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. IEEE, 2008, pp. 363–372.

[4] Xutao Li, Yunming Ye, and Xiaofei Xu, “Low-rank ten-
sor completion with total variation for visual data in-
painting.,” in AAAI, 2017, pp. 2210–2216.

[5] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki,
“Bayesian cp factorization of incomplete tensors with
automatic rank determination,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no.
9, pp. 1751–1763, 2015.

[6] Wenrui Hu, Dacheng Tao, Wensheng Zhang, Yuan X-
ie, and Yehui Yang, “The twist tensor nuclear norm for
video completion,” IEEE transactions on neural net-
works and learning systems, 2016.

[7] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu,
Zhouchen Lin, and Shuicheng Yan, “Tensor robust prin-
cipal component analysis: Exact recovery of corrupted
low-rank tensors via convex optimization,” in Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 5249–5257.

[8] Pan Zhou, Canyi Lu, Zhouchen Lin, and Chao Zhang,
“Tensor factorization for low-rank tensor completion,”
IEEE Transactions on Image Processing, 2017.

[9] Xiao-Yang Liu, Shuchin Aeron, Vaneet Aggarwal, and
Xiaodong Wang, “Low-tubal-rank tensor completion
using alternating minimization,” arXiv preprint arX-
iv:1610.01690, 2016.

[10] J Douglas Carroll and Jih-Jie Chang, “Analysis of in-
dividual differences in multidimensional scaling via an
N-way generalization of eckart-young decomposition,”
Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[11] Christopher J Hillar and Lek-Heng Lim, “Most tensor
problems are NP-hard,” Journal of the ACM (JACM),
vol. 60, no. 6, pp. 45, 2013.

[12] Joseph M Landsberg, Tensors: geometry and applica-
tions, vol. 128, American Mathematical Society Provi-
dence, RI, 2012.

[13] M.E. Kilmer, K. Braman, N. Hao, and R.C. Hoover,
“Third-order tensors as operators on matrices: A the-
oretical and computational framework with applications
in imaging,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 34, no. 1, pp. 148–172, 2013.

[14] Wei He, Hongyan Zhang, Liangpei Zhang, and Huan-
feng Shen, “Total-variation-regularized low-rank matrix
factorization for hyperspectral image restoration,” IEEE
Transactions on Geoscience and Remote Sensing, vol.
54, no. 1, pp. 178–188, 2016.

[15] Zemin Zhang, Gregory Ely, Shuchin Aeron, Ning Hao,
and Misha Kilmer, “Novel methods for multilinear da-
ta completion and de-noising based on tensor-SVD,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2014, pp. 3842–3849.

[16] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping
Ye, “Tensor completion for estimating missing values in
visual data,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 1, pp. 208–220, 2013.

1367


