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ABSTRACT

This paper proposes color affine subspace pursuit (CASSP) for color
artifact removal. Local patches in natural color images tend to ex-
hibit a line distribution, so-called a color line. According to this
characteristic, a convex-optimization-based image recovery with a
local color nuclear norm (LCNN) has conventionally been intro-
duced to promote the color line property of local patches and suc-
ceeded in removing color artifacts. It is, however, often the case that
a local patch does not form a line distribution, but a union of affine
subspaces (UoAS), e.g., a patch consisting of two different colors. In
such regions, the LCNN often results in color fading or color smear-
ing. This paper promotes the UoAS property, i.e., the color line or
plane distribution for each affine subspace in local patches by using
CASSP. Our cost function for the CASSP consists of the LCNN for
each centered color distribution cluster. Experimental results show
that the CASSP improves both numerical reconstruction error and
subjective visual quality, compared with the LCNN.

Index Terms— Convex optimization, image recovery, color line
property, local color nuclear norm, union of affine subspace

1. INTRODUCTION

Image recovery via convex optimization enables us to take a uni-
fied approach for various image processing tasks, e.g., denoising,
deblurring, missing pixel recovery, super resolution, and so on [1–4].
Mathematically, for an N sample observed (vectorized) color image
y ∈ R3N and a matrix representing a degradation process Φ ∈
R3N×3N (for mathematical expressions, see Notations in the end of
this section), a desired latent image is estimated by finding a mini-
mizer of the following cost function J (x):

x⋆ = argmin
x∈R3N

J (x) = argmin
x∈R3N

Fy(Φx) + λR(x), (1)

where Fy : R3N → R+ is some data fidelity function, e.g.,
Fy(x) = 1

2
∥Φx − y∥22 and λ ∈ R+ is a weighting coefficient.

Here, to obtain high quality restored images in each task, we should
design a suitable convex prior R : R3N → R+ which mathe-
matically characterizes desired properties of ideal images, such as
smoothness, patterns, and sparsity in some transformed domain. For
example, total variation [5–9] and total generalized variation [10]
have been proposed for smooth regions, and sparse representation
by (local/non-local) frame/dictionary [11, 12], and structure-tensor
total variation [13–15] for textures.

This work was supported in part by JSPS Grants-in-Aid (16H04362,
17K12710, and 17K14683) and JST-PRESTO.

In color image recovery, we often face with color artifacts, e.g.,
false colors in resulting estimated images, even though the state-of-
the-art regularizers, which use local/non-local similarity, dictionary
learning and so on, are introduced into a cost function. For exam-
ple, one can observe color smearing artifacts in [16] (Fig. 8), [17]
(Fig. 11), and [14] (Fig. 3). To remove color artifacts, a local color
nuclear norm (LCNN) has been proposed [18, 19]. Clean color im-
ages mainly consist of local patches of which distribution is (almost)
a line as shown in the regions (b) and (c) in the image Parrots in
Fig. 1. With this property in mind, the LCNN evaluates the sum of
singular values of a color matrices. Each matrix aligns R, G, and
B channels of the corresponding local patch. When its cost func-
tion with the LCNN for image recovery is minimized, the color line
property is promoted, and thus color artifacts are reduced.

However, it is often the case that the color line property fails
in many local patches as shown in the regions (a) and (d) in Fig.
1. Such regions typically consist of two or more colors. This can
be regarded as the union of affine subspaces (UoAS), i.e., lines and
planes that do not necessarily go through the origin point. Since the
regularization by the LCNN acts as an approximation of the color
distribution toward a single low dimensional subspace, in the case
of the UoAS, the LCNN causes color artifacts, e.g., color fading or
color smearing across object boundaries.

This paper attempts to overcome the problem of the LCNN.
First, we formulate an optimization problem that regards to promote
the color affine subspace property for UoAS patches. This strategy
is termed as color affine subspace pursuit (CASSP). The initial cost
function of the CASSP involves a matrix factorization that makes it
highly ill-posed and non-convex. Thus, to simply find an approx-
imated solution, we modify the conventional LCNN to a centered-
cluster-wise LCNN, which is based on image pre-recovery and K-
means clustering, for CASSP.

The rest of this paper is organized as follows. Section 2 reviews
LCNN and a primal-dual splitting (PDS) [20–23], which is a solver
of a class of convex optimization used in this paper. Then, CASSP
is explained in Section 3. The proposed method is evaluated in the
experiments of compressed image sensing in Section 4. Finally, this
paper is concluded in Section 5.

Notations: Bold-faced lower-case and upper-case letters denote
vectors and matrices, respectively. Sets R and R+ respectively de-
note real and non-negative real numbers, respectively. Real-valued
and non-negative real-valued matrices of size Nr [row] and Nc [col-
umn] are described as RNr×Nc and RNr×Nc

+ . diag(a0, . . . , aM−1)

denotes diagonal matrices. ∥ · ∥2 is ℓ2 norm. IN ∈ RN×N and 1
are reserved for the identity matrix and the all-ones vector. ⊗ is the
Kronecker product.
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Fig. 1: Parrots and four local color distributions (patch size: 16×16)
depicted in the 3 dimensional space, where each axis corresponds to
R, G, and B.

Fig. 2: Local color matrix

2. PRELIMINARIES

2.1. Local Color Nuclear Norm

The LCNN [18, 19] was proposed to promote the color line prop-
erty of local patches as follows. Let an N sample color image be
c =

[
c⊤r c⊤g c⊤b

]⊤ ∈ R3N (cr, cg, cb ∈ RN are the R, G, and
B channels, respectively). The set of indices of the pixels is N =
{1, . . . , N}, that of the pixels in the k-th patch (k = 1, . . . ,K) is
denoted as Ik ⊂ N (patches can overlap each other), the number
of its elements is |Ik|, and all the sets of indices is Ĩ := {Ik}Lk=1.
Let the R, G, and B channels in the k-th patch of an input image
be cr,k, cg,k, cb,k ∈ R|Ik| the color matrix corresponding to the ℓ-
th patch is determined as Mk :=

[
cr,k cg,k cb,k

]⊤ ∈ R3×|Ik| (see

Fig. 2). Then, the LCNN ∥·∥Ĩ,w,µ
LC : R3Ñ → R+ (Ñ =

∑K
k=1 |Ik|)

is defined as

∥x∥Ĩ,w,µ
LC∗ :=

K∑
k=1

µk∥Mk∥∗,w, (2)

where, for X ∈ Rp×q , ∥X∥∗,w =
∑r

i=1 wiσi(X) (r = min{p, q})
is a weighted nuclear norm (NN) with some weighting coefficients1

w =
[
w1 w2 w3

]⊤ ∈ R3
+. σi(X) is the i-th largest singular value

of X. µ :=
[
µ1 · · · µK

]⊤ ∈ RK
+ relatively controls how much the

color line property should be promoted for each local patch.
In finding a solution of the convex optimization problem with

LCNN by some proximal splitting method, one requires the (pseudo)
proximity operator of the LCNN. In general, the proximity operator
of f ∈ Γ0(Rp)2 is defined as [24]:

proxγf : Rp → Rp : x 7→ argmin
x∈Rp

f(x) +
1

2γ
∥y − x∥22. (3)

Since patches would have overlap (Ik1∩Ik2 ̸= ∅) that prevents from
computing the proximity operator directly, an equivalent expression

1In this paper, we assume that w1 ≤ w2 ≤ w3 and all the nonzero
singular values of each color matrix are distinct [15].

2Γ0(Rp) is the set of proper lower semi-continuous convex functions [24]
on Rp.

of the LCNN, which is termed as an augmented LCNN in [18, 19],
was presented. Let ΩI =

[
Ω⊤

1 · · · Ω⊤
K

]⊤ ∈ R3Ñ×3N be an
extending operator, where Ωk ∈ R|Ik|×3N picks samples in the
k-th local patch, i.e., Ωkc =

[
c⊤r,k c⊤g,k c⊤b,k

]⊤. Then, the aug-
mented LCNN is defined as:

∥ · ∥I,w,µ
ALC∗ : R3Ñ → R+ : x 7→

K∑
k=1

µk∥Mk∥∗,w, (4)

and LCNN can be represented as:

∥c∥I,w,µ
LC∗ = ∥ΩIc∥I,w,µ

ALC∗ . (5)

Since the extending operator ΩI makes the local patches non-
overlapping, the proximity operator of the augmented LCNN can
be decoupled with the proximity operator of the weighted NN
proxγ∥·∥∗,w for each patch Mk, which can be computed by the
weighted singular value thresholding:

proxγµk∥·∥∗,w (Mk) = UkΣγµkwV⊤
k ,

Σγµkw = diag({σ1(X)− γµkw1}+, . . . , {σr(X)− γµkwr}+),
(6)

where Uk and Vk are orthogonal matrices obtained via singular
value decomposition of Mk and {a}+ := max{a, 0}.

2.2. Primal-Dual Splitting Algorithm

We briefly review a primal-dual splitting algorithm (PDS) [20–22] as
a solver of a convex optimization problem used in the experiments
in Section 4. Consider the following convex optimization problem
to find x⋆ ∈ argminx∈Rq g(x) + h(Lx), where g ∈ Γ0(Rq), h ∈
Γ0(Rp), and L ∈ Rp×q . Then the PDS for solving the problem is
given as follows:{

x(n+1) := proxγ1g
[x(n) − γ1L

⊤z(n)],

z(n+1) := proxγ2h∗ [z(n) + γ2L(2x
(n+1) − x(n))],

(7)

where h∗ is the conjugate function3 [24] of h.

3. COLOR AFFINE SUBSPACE PURSUIT

3.1. Problem on LCNN

Before presenting the proposed method, we discuss the problem on
the LCNN in this section. Minimizing the cost function with the
LCNN can be regarded as shrinking a color distribution of a local
patch toward a low dimensional subspace. Thus, the LCNN can ef-
ficiently recover patches when the true color distribution (the red-
circle samples) is lying around a line that cross the origin as shown
in Fig. 3(a), whereas it cannot in the following two cases.

• Affine subspace: Even if a local patch forms a line or a plane,
it does not necessarily cross the origin. Since image recovery
with a LCNN regularization tries to make a color distribution
cross the origin, the estimated distribution would differ from
the true one when the latent distribution is affine. For exam-
ple, let us assume the red-circle samples around the line ℓ1
in Fig. 3(b) are true samples. In this case, the latent samples
are wrongly estimated by the (blue-circle) samples around the
line ℓ2 in Fig. 3(b).

3For ∀f ∈ Γ0(Rp), the conjugate function f∗ of f is defined as:
f∗(ξ) = supx∈Rp ⟨x, ξ⟩ − f(x), and the proximity operator of the con-
jugate function is defined as: propγf∗ (x) = x− prox 1

γ
f (

1
γ
x).
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(a) (b) (c)

Fig. 3: Color distributions as UoAS: (a) subspace (line), (b) affine
subspace (line), (c) union of subspaces (lines)

• Union of subspaces: Consider a case that a local patch con-
sists of two lines (the red-circle samples) and two outliers (the
blue-circle samples). As shown in Fig. 3(c), to obtain the de-
sired local patch, we should shrink the distribution toward to
the lines ℓ1 and ℓ2. However, in this case, a LCNN regular-
ization approximates the latent color distribution toward not
lines but a plane (the gray plane in Fig. 3(c)), one cannot dis-
tinguish whether the blue-circle samples are outliers or not.

3.2. General Formulation of CASSP

To overcome the problem on LCNN, this section presents a general
formulation of CASSP as follows. To characterize a UoAS of a local
patch, we model every Mk as Mk ≈ WkPk +DkQk (see Fig. 4),

where Wk ∈ R3×N
(W )
k

+ and Dk ∈ R3×N
(D)
k

+ represent dictionaries
to span lines/planes and compensate offsets, respectively (the num-
bers of columns {N (W )

k }k and {N (D)
k }k should be determined in

advance). It is allowed to choose the dictionaries Wk and Dk begin

redundant, as long as the coefficient matrices Pk ∈ RN
(W )
k

×|Ik| and

the binary matrix Qk ∈ {0, 1}N
(D)
k

×|Ik| are sparse and low-rank.
Under the setting, the optimal set of variables X⋆ and Γ⋆ =

({W⋆
k}, {P⋆

k}, {D⋆
k}, {Q⋆

k}) promoting the UoAS property should
satisfy the following equation:

(X⋆,Γ⋆) = argmin
X,Γ

J (X,Γ),

J (X,Γ) := FY(Φ(X)) +RCASSP(X,Γ),

RCASSP(X,Γ) :=

K∑
k=1

λ1∥Xk − (WkPk +DkQk)∥2F

+ λ2∥Pk∥∗ + λ3∥Pk∥1 + λ4∥Qk∥∗ + λ5∥Qk∥1
+ ιR+(Wk) + ιR+(Dk) + ι{0,1}(Qk), (8)

where FY : R3×N → R+ is some data fidelity function, and ιR+

and ι{0,1} are the indicator function4 (we omit the notation for the
size of matrices). λk ∈ R+ (k = 1, . . . , 4). This cost function
is highly ill-posed and non-convex due to the matrix factorization
problem.

3.3. CASSP by Centered-cluster-wise LCNN

The optimization of (8) is hard to solve, particularly in finding the
optimal matrices Wk and Dk. Here, we simplify the cost function
for CASSP by using a low-dimensional approximation for each cen-
tered cluster. It includes clustering and centering operations to each
patch (Fig. 5), which is explained as follows.

4The indicator function of a set A (ιA : Rp → {0,∞}) is defined as
ιA(x) = 0 (x ∈ A), ιA(x) = ∞ (x /∈ A).

Fig. 4: General CASSP formulation

Fig. 5: Centered-cluster-wise LCNN regularization

1. Pre-recovery: To apply some clustering technique, a de-
graded image is firstly recovered by using some regulariza-
tion, e.g., vectorial total variation [6] in (1).

2. Clustering: After the pre-recovery, perform the cluster-
ing, e.g., K-means clustering, to each patches, and obtain
Lk clusters of the k-th patch. The set of indices of the
ℓ-th cluster in the k-th patch is denoted as Ik,ℓ, the num-
ber of its elements as |Ik,ℓ|, and all the sets of indices
is Ĩc := {Ĩc

k}Kk=1, where Ĩc
k := {Ik,ℓ}Lk

ℓ=1. Let the R,
G, and B channels in the k-th patch of an input image be
Mk,ℓ :=

[
cr,k,ℓ cg,k,ℓ cb,k,ℓ

]⊤ ∈ R3×|Ik,ℓ| the color
matrix of the ℓ-th cluster in the k-th patch. an extending op-
erator ΩĨc =

[
Ω⊤

1,1 · · · Ω⊤
K,LK

]⊤ ∈ RÑ×3N , where
Ωk,ℓ ∈ R|Ik,ℓ|×3N picks the samples of the ℓ-th cluster in
the k-th cluster, i.e., Ωk,ℓc =

[
c⊤r,k,ℓ c⊤g,k,ℓ c⊤b,k,ℓ

]⊤.

uk,ℓ =
[
ur,k,ℓ ug,k,ℓ ub,k,ℓ

]⊤ ∈ R3
+ denotes the center

of each cluster.

3. Centered-cluster-wise LCNN: To make the optimization
problem tractable, we modify LCNN for CASSP. Let mĨc ∈
R3Ñ be all the centers corrected from all the cluster as

mĨc :=
[
m⊤

1,1 · · · m⊤
1,L · · · m⊤

K,LK

]⊤ ∈ R3Ñ

mk,ℓ :=
[
ur,k,ℓ1

⊤ ug,k,ℓ1
⊤ ub,k,ℓ1

⊤]⊤ ∈ R3|Ic
k,ℓ| (9)

Now, we define the centered-cluster-wise LCNN (ccLCNN)
as

∥c∥Ĩ
c,w,µc

ccLC := ∥c−mĨc∥Ĩ
c,w,µc

LC = ∥ΩĨcc−mĨc∥Ĩ
c,w,µc

ccALC

∥c∥Ĩ
c,w,µc

ccALC :=

K∑
k=1

Lk∑
ℓ=1

µk,ℓ∥Mk,ℓ∥∗,w, (10)

where µc :=
[
µ1,1 · · · µK,LK

]⊤ ∈ R
∑

k Lk
+ is the

cluster-wise relative strength.
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Algorithm 1 Solver for (11)

1: set n = 0 and choose c(0), z(0)
1 , z(0)

2 , γ1, γ2.
2: while stop criterion is not satisfied do
3: c(n+1) = proxγ1ι[0,1]

(c(n) − γ1(Φ
⊤z

(n)
1 +Ω⊤

Ĩcz
(n)
2 +D⊤z

(n)
3 ))

4: t
(n)
1 = z

(n)
1 + γ2Φ(2c(n+1) − c(n)),

t
(n)
2 = z

(n)
2 + γ2ΩĨc (2c

(n+1) − c(n)),

t
(n)
3 = z

(n)
3 + γ2D(2c(n+1) − c(n)).

5: t̂
(n)
1 = prox 1

γ2
ιB(v,ϵ)

(
1
γ2

t
(n)
1

)
,

t̂
(n)
2 = prox

1
γ2

∥·−mĨc∥Ĩ
c,w

ccALC

(
1
γ2

t
(n)
2

)
,

t̂
(n)
3 = prox 1

γ2
∥·∥1,2

(
1
γ2

t
(n)
3

)
.

6: z
(n+1)
k = t

(n)
k − γ2t̂

(n)
k (k = 1, 2, 3).

7: n = n + 1.
8: end while
9: Output c(n).

Let us discuss the relationship between RCASSP(X,Γ) in (8) and
∥c∥ccLC in (10). Because the clustering gives us the heuristic solu-
tion of (Dk, Qk) in (8), we denote it as (D̂k, Q̂k), RCASSP(X,Γ)
can be reduced as:

R̃CASSP(X, {Wk}, {Pk})) :=
K∑

k=1

λ1∥Xk −WkPk∥2F

+ λ2∥Pk∥∗ + λ3∥Pk∥1 + ιR+(Wk), (Xk := Xk − D̂kQ̂k).

The above sparse and low-rank representation acts as a low-
dimensional approximation for each centered cluster, and thus the
ccLCNN can be regarded as a simple substitution of (8).

4. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed ccLCNN-based
CASSP with VTV (VTV + ccLCNN) in compressed sensing recon-
structions and compared with the VTV, and the VTV + LCNN [15].
As test images, we use Parrots and the 300 images of the Berkeley
Segmentation Database (BSDS300) [25]. Fig. 6 shows the origi-
nal images c ∈ R2562 (left) and the observed images (right). Each
incomplete observation v = Φc + n (Φ := SΦ̃) is obtained by
the Noiselet transform [26] Φ̃ followed by random downsampling
S ∈ RM×3N (M = 0.2× 3N) in the presence of an additive white
Gaussian noise n with standard derivation 0.1.

The cost function of VTV + ccLCNN for compressed sensing
reconstructions is formulated as follows.

c⋆ = argmin
c∈R3N

Fv(Φc) + λ1∥ΩĨcc−mĨc∥Ĩ
c,w,µc

ccALC

+ λ2∥Dc∥1,2 + ι[0,1](c), (11)

where we used Fv as the indicator function of the ℓ2-norm ball
ιB(y,ϵ) (B(v, ϵ) := {x ∈ RM |∥x − v∥2 ≤ ϵ}, ϵ = ∥Φc − v∥2),
λ1 = 2, λ2 = 1. For the LCNN and the ccLCNN, the patches size is
16× 16, the patches is horizontally, vertically, and diagonally over-
lapping 8 pixels, and w = [0.001, 1, 1]⊤. In the ccLCNN, K-means
clustering with the number of cluster Lk = 3 (∀k) is used. For the
LCNN µk = 1 (∀k), whereas µk,ℓ = 1 (|Ik,ℓ| > 0.2|Ik|), µk,ℓ =
0.3 (0.1|Ik| < |Ik,ℓ| ≤ 0.2|Ik|), µk,ℓ = 0.18 (|Ik,ℓ| ≤ 0.1|Ik|)
for the ccLCNN. D is the vertical and horizontal differential matrix
defined as D = I3 ⊗ D0 ∈ R6N×3N , where D0 = [D⊤

v D⊤
h ]

⊤.
∥ ·∥1,2 is the mixed ℓ1,2 norm [19]. C[0,1] is the set of vectors whose

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

Fig. 6: (a)–(e) Original images (256×256) and observed images

(a) Original (b) VTV (c) VTV+LC (d) VTV+ccLC

(e) Original (f) VTV (g) VTV+LC (h) VTV+ccLC

Fig. 7: Resulting images of Image 1 and Image 2

Table 1: Numerical Error (PSNR [dB])

Image 1 Image 2 Image 3 Image 4 Image 5 Ave.
VTV 30.51 25.55 25.61 25.51 27.50 28.00

VTV+LC 30.76 26.43 26.62 26.54 28.15 29.37
VTV+ccLC 32.08 27.06 27.04 27.53 28.78 29.74

entries are within [0, 1]. In order to solve (11) by PDS, the functions
g and h, and the matrix L in (7) are set as:

g(c) = ιC[0,1]
(c), z = [z⊤1 z⊤2 z⊤3 ]

⊤ = Lc,

h(z) = ιB(v,ϵ)(z1) + λ1∥z2 −mĨc∥Ĩ
c,w,µc

ccALC + λ2∥z3∥1,2,

L =
[
Φ⊤ Ω⊤

Ĩc D⊤]⊤ . (12)

Then, a solver of (11) can be described in Algorithm 1 (see [15]
for the detail of each proximal operator). The stopping criteria is
∥c(n) − c(n−1)∥2 < 0.01.

As shown in Table 1 (“Ave.” means the avarage of all the result-
ing PSNRs from the BSDS300), the VTV + ccLCNN could reduce
the reconstruction error, compared with the VTV and the VTV +
LCNN. Moreover, as shown in Fig. 7, color smearing and fading
artifacts are reduced in the resulting images of the VTV + ccLCNN,
compared with that of the VTV and the VTV + LCNN.

5. CONCLUDING REMARKS

This paper proposed a CASSP method for color artifact removal.
Local patches in natural color images often do not satisfy the color
line property but the color UoAS property, LCNN cannot efficiently
estimate the latent image. In this work, we introduce the CASSP
approach to promote the color UoAS property. First the UoAS was
characterized by sparse and low-rank representation by two dictio-
naries. The cost function, however, involves a matrix factorization
problem that make it hard to solve. Thus, we simplify the cost func-
tion by using ccLCNN evaluating LCNN to each centered cluster
after image pre-recovery clustering. Experimental results showed
that CASSP recovered latent images more robustly than the conven-
tional LCNN in both numerical reconstruction error and subjective
visual quality.
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