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ABSTRACT

Single-image blind deblurring is a challenging ill-posed in-
verse problem which aims to estimate both blur kernel and
latent sharp image from only one observation. This paper fo-
cuses on first estimating the blur kernel alone and then restor-
ing the latent image since it has been proven to be more feasi-
ble to handle the ill-posed nature during blind deblurring. To
estimate an accurate blur kernel, LO-norm of both first- and
second-order image gradients is proposed to regularize the
final estimation result. The proposed LO-regularized hybrid
gradient sparsity priors obtain major benefit from the intrin-
sic sparsity properties of images and can assist in guarantee-
ing high-quality blur kernel estimation. Once the blur kernel
is estimated, the final clean image is robustly generated using
the combination of L1-norm data-fidelity term and total vari-
ation regularizer. Experimental results have demonstrated the
satisfactory performance of the proposed method.

Index Terms— image deblurring, deconvolution, spar-
sity, total variation, nonconvex nonsmooth optimization

1. INTRODUCTION

Single-image blind deblurring aims to simultaneously esti-
mate blur kernel and latent sharp image from only one blurred
observation, which is a typical ill-posed inverse problem. The
blurred image B can be written as the convolution of a latent
sharp image L with a uniform blur kernel k, i.e., B = Lxk+e¢
with * being the linear convolution operator. To eliminate the
ill-posed nature, the statistical priors learned from blur ker-
nels and clean images should be incorporated into the MAP
estimation framework. Current blind deblurring methods are
roughly separated into two types [1, 2, 3, 4]: (1) one-step
methods that simultaneously estimate the blur kernel and la-
tent sharp image; (2) two-step methods that first estimate the
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blur kernel, and then restore the latent sharp image (i.e., non-
blind deconvolution). The kernel size is often smaller than the
image size. Thus, the simultaneous estimation of blur kernel
and clean image often fails in practice [1, 2]. In contrast, the
estimation of blur kernel alone is considerably more robust
compared with the simultaneous version. This paper mainly
focuses on the two-step method since it is more feasible to
handle the ill-posed nature. The general MAP framework for
blur kernel estimation is given by

min {D (L, k, B) + Ay, (L) + v ()}, (1

where A and + are pre-defined positive regularization param-
eters, D (L, k, B) is the data-fidelity term, @1, (L) and Oy, (k)
respectively represent the regularization terms on latent image
and blur kernel. The squared L2-norm version of D (L, k, B)
is more common in current literature due to the assumption
of Gaussian distributed noise. Both L1-norm [8] and squared
L2-norm [5] versions of @y (k), i.e., ||k||; and ||k||§, per-
form well in accurately estimating blur kernels. Thus, much
more attention has been paid to @, (L) related to image spar-
sity priors. For example, total variation (TV) prior [6] and
its logarithmic version [7] have been introduced. The pi-
oneering normalized gradient sparsity prior [8], dark chan-
nel prior [9] and hybrid bright-dark channel prior [10] have
achieved great success. Recently, the LO-norm of image gra-
dients [5, 11, 12, 13], the ideal sparsity-promoting prior, has
been selected to enforce the estimation accuracy. Patch-based
low-rank prior [14] has also been successfully extended to
blind deblurring. From a computational point of view, the
low-rank-guided method easily suffers from high computa-
tional cost in practical applications.

Motivated by the LO-regularized blur kernel estimation
[5, 11, 12], we proposed the hybrid gradient sparsity priors to
further enhance the estimation accuracy by combining the LO-
norm of both first- and second-order image gradients. Current
research has demonstrated the effectiveness of the first- and
second-order image gradients. Their combination [15, 16] has
also been widely studied and achieved superior performance
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compared with the single version. It is well known that LO-
norm works well in naturally interpreting the sparsity of im-
age gradients. Thus, it is necessary to combine the LO-norm
of both first- and second-order image gradients to guarantee
high-quality estimation. In particular, the LO-regularized hy-
brid gradient sparsity priors introduced in this work are able
to better preserve the gradient sparsity and salient edges.

2. ROBUST BLUR KERNEL ESTIMATION

2.1. Blur Kernel Estimation Model

For the sake of computational efficiency, the squared L2-
norm constraint on blur kernel (i.e., ||k:||§) is directly uti-
lized in this paper. Effectiveness of this convex constraint
has been demonstrated [5, 11, 14]. Let V = {0,,0,} and
A = {022, 0zy, Oyz, Oyy} denote the first and second-order
differential operators, respectively. As discussed in Section
1, the blur kernel estimation model is proposed by combining
the LO-regularized first- and second-order image gradients

iy {||VL*I<: VB|24 A% (VL, AL)+’Y|’€||2} @

with A,y > 0 denoting the regularization parameters. The
hybrid regularization term ® (VL, AL) on image gradients
is defined as ® (VL,AL) = a1 [|[VL|, + a2 [|AL|, with
aj,as € [0,1] and oy + ap = 1. Here, ||z[, counts the
number of nonzero values of . If as = 0, our proposed
model (2) will simplify to a simple version introduced in [11].
Let (; and (> denote the magnitudes of the first and second-
order differential operators, respectively. By considering the
definitions of V and A, it is easy to generate (o = v/2(; [17].
We assume that the relationship between o and as could be
roughly obtained from (; and (5. In this work, we propose
an intuitive method to yield the relationship between a; and
o, i.e., as = V2. Thus, a1 = V2 —1land ay = 2 — /2
are selected in our experiments. In addition, our method does
not take into account other additional operations, e.g., shock
filtering [18, 19] or selecting informative edges [11, 19].

2.2. Numerical Optimization Algorithm
2.2.1. k-Estimation

In the blur kernel estimation step, given the fixed values of
Ly, the blur kernel k at the (¢ 4+ 1)-th outer iteration can be
obtained by solving the least-squares optimization problem

ker1 = ming, {% VL %k — VB|? +~ Hk||§}, whose so-

lution £y is given by

! F (VL

) )
)F (VL) +2vF (1)

where I is an identity matrix, @ represents the complex
conjugate operator, F and F ! respectively denote the Fast

Fourier Transform (FFT) and its inverse version [11]. It is
computationally efficient to generate the numerical solution.

2.2.2. V L-Estimation

Given the fixed value of k;, 1, the estimation of intermediate
latent sharp image gradient VL at the (¢ + 1)-th outer itera-
tion is equivalent to optimizing the following LO-regularized
least-squares minimization problem

Vi = mvm{||w:>kkt+1 VB||§+A<I>(VL,AL)}

“4)

To guarantee the solution stability, an ADMM-based nu-

merical optimization algorithm [20] will be introduced to deal

with (4). We first introduce two intermediate variables Y =

VL and Z = AL, then transform the unconstrained optimiza-
tion problem (4) into a constrained formulation as follows

VL)Y,Z
st. Y=VL, Z=AL, (5)

. 1
win, {312 hess = VIS4 Aan Y1y + e 121, |

whose augmented Lagrangian function can be formulated as
La(VLY, Z:6,9) = 3 [VL*kisr = VB|3+Aa Yo+

gy - VL——H +Aaz |2l + 2|2 -AL- £

where & and ¢ denote the Lagrangian multipliers, /31 and ﬂg
are predefined positive parameters.

V L-subproblem: At the (s + 1)-th inner iteration, the
first V L-subproblem VL; 11 < minyy, L4 (VL, Yo, Zs; s, gps)
can be handled by considering the following problem, i.e.,

VList1 = min { |VL % kiyr — VB (6)

LB ¢ /3 ’
Y,-VL- 2 Zs— AL —

2 61 2 62 2

for s = 0,1, -+, Smax. The solution VL, ;11 can be easily

obtained using the forward and inverse FFT operators, i.e.,
= ]:_1 (]:num/]:den) ) (7)

with Fgen = f(k) ( )+,811+62F( )‘F (v) and Fym =
FRF(VB) +BF (Y, - &) + BF(VF(2 - ).

(Y, Z)-subproblem: Given the fixed values of VL; 511,
&5 and p, obtained from the previous iterations, the optimal
solutions (Ys41, Zs+1) of the (Y, Z)-subproblem (Y41, Zs41)
miny,z L4 (VL st1,Y, Z; &5, ps) could be easily generated
by implementing the LO-regularized least-squares minimiza-

2
# = (V2een + )]+

o\ |12
- (A + 2)] ¢
with VL, o = VL,. The unknown variables ¥’

V[/2575Jr1

tion problems Y, ; = miny {

Aoy [[Y][, } and Zs 1 = ming {/52

Az |21l }
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Algorithm 1 Robust Blur Kernel Estimation

1: Input: Blurred image B, 7 = 1.618, v = 5 x 1072,
n =12 = 1073, and M.y = 15.

2: Imitialize: k) = uniform, VLo = VB and ¢ = 0.

3: while (not converged and ¢ < Ty,,x) do
/I Step 1 : Blur Kernel Estimation k1

4: Update k¢ according to (3).
/I Step 2 : Image Gradient Estimation V Ly 1

S: VLt’() + VL.

6: for s = 0 to Spax do

7: Update VL; ;41 according to (7).

8: Update Y11 and Z5 1, according to (8) and (9).
9: §s+1 = gs - Tﬂl (Ys+1 - VLt,erl)-

10: Psr1=9s = TP2(Zsy1 — ALt s11).

11: end for

12: VLt+1 — VLt7S
13: end while
14: Output: blur kernel k.

max *

and Z are componentwise separable. It is easy to generate
the solutions Y4 and Z,; through the simple but effective
element-wise hard-thresholding operator 7 [21], i.e.,

sz+1 = 7—)\0(1,,81 (VLt,erl + 55/51) P (8)
Zs+1 = 7-)\a2,62 (ALt,erl + @s/ﬂQ) ) (9)

where T, (z) = sign(max (|z| — \/2a/b,0)) o x with
sign(-) being sign function and o being pointwise product.

¢ and ¢ update: During each iteration, the Lagrange
multipliers £ and ¢ could be directly updated using {511 =
& — 7P1(Yey1 — VL oi1) and @op1 = 5 — 702(Zsy1 —
ALt,sH) with 7 = 127\/5 The reconstructed image gradient
VL1 = VLg,,.. is produced to assist in estimating blur
kernel in the next step. The proposed numerical method is
reasonable to handle the nonconvex nonsmooth LO-norm op-
timization problem (2). The whole optimization procedure is
summarized in Algorithm 1.

3. LATENT SHARP IMAGE RESTORATION

To suppress outliers during non-blind deconvolution, the L1-
norm data-fidelity term and edge-preserving TV regularizer
were combined [19] to reconstruct the latent sharp image L.
The TV-regularized variational model (i.e., TVL1) for non-
blind deconvolution is given by

min {| Lk — Bl + VL], } (10)
where the regularization parameter g is set to 5 x 1072, The
L1-norm data-fidelity term in (10) commonly performs more
robust to the undesirable outliers compared with the widely-
used squared L2-norm version. The alternating minimization
algorithm (AMA) was introduced to efficiently handle (10).
More details could be found in [19].
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Fig. 1. Quantitative evaluation (left: PSNR, right: SSIM) on
the benchmark dataset by [25] for different deblurring meth-
ods, i.e., Fergus [22], Hirsch [23], Krishnan [8], Shan [17],
Whyte [24], Pan&Su [11], Pan [9] and our method.

(e) Whyte (f) Pan&Su (g) Pan

(h) Ours

Fig. 2. Comparison with state-of-the-art deblurring methods
on a synthetic image of size 800 x 800. Our estimated (uni-
form) blur kernel of size 145 x 145 is visually illustrated in
the bottom-left panel.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Numerical experiments were performed using MATLAB
R2017a on a machine with a 3.00 GHz Intel(R) Core (TM)
15-7400 CPU and 8.00 GB RAM. The experiments were im-
plemented on both synthetic and realistic images to compare
the proposed method with several state-of-the-art blind de-
blurring methods, i.e., Krishnan [8], Pan [9], Pan&Su [11],
Shan [17], Fergus [22], Hirsch [23] and Whyte [24]. The
first four methods were performed based on the uniform blur
assumption. In contrast, the last two methods were able to
handle non-uniform blurring situations. In all experiments,
we manually selected the optimal parameters A = 2 x 1072,
y=1x1073,8 =5x1073, 8, =1x10"% a; =v2—-1
and o = 2 — V/2 for our method. Experimental results
have illustrated the effectiveness of these manually defined
parameters. For the sake of fairness, online available imple-
mentations of the competing deblurring methods were used
with the best tuning parameters and the best possible results.

4.1. Experiments on Synthetic Images

Synthetic experiments were conducted on the popular Kohler
et al’s benchmark dataset [25], which includes 48 blurred im-
ages (generated by 4 sharp images of size 800 x 800 and
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(a) Input (b) Krishnan

(c) Pan&Su (d) Pan

Fig. 3. Blind deblurring of three realistic natural images with large-scale blur kernels. The sizes of the estimated blur kernels
from top to bottom are 135 x 135, 101 x 101 and 95 x 95, respectively. (The images are best viewed in full-screen mode.)

Table 1. Average computational time (Mean £ Std) of Pan
[9] and our method for four different images (Unit: minutes).
[Methods| Image 1 | Image2 | Image3 | Image4 |
Pan [9] (11.6 +1.93|13.2 +2.37|13.0 4 3.22|12.5 £ 2.21
Ours  |0.84 +£0.12/0.86 + 0.17]0.89 + 0.17(0.82 £ 0.11

12 different blur kernels). Both PSNR and SSIM metrics
were selected to assess the competing deblurring methods.
As shown in Fig. 1, our method was found to produce results
comparable to the state-of-the-art blind deblurring methods
in terms of average PSNR and SSIM values. In particular,
the proposed method significantly outperforms Pan&Su [11]
(which could be considered as a special case of our method)
in all experiments. Its superior performance mainly benefits
from the LO-regularized hybrid gradient sparsity priors. Pan
[9] sometimes generates higher average PSNR and SSIM val-
ues by enforcing the sparsity of image dark channel. How-
ever, the deblurring performance suffers from extremely high
computational cost shown in Table 1. Our proposed method
is able to guarantee a good balance between deblurring qual-
ity and computational time. The good result of our method
is further visually confirmed in Fig. 2. The competing meth-
ods easily cause significant artifacts in deblurred outputs. In
contrast, our method could overcome the undesirable artifacts
and improve the visual image quality.

4.2. Experiments on Realistic Images

This subsection only evaluates the imaging quality of uniform
deblurring methods on several realistic blurred images. The
natural images with large-scale blur kernels, shown in Fig. 3,
were firstly selected to measure the deblurring performance.
It is observed that our method is able to effectively estimate
the large-scale blur kernels and reconstruct the latent sharp
images. Pan [9] does not always perform well since the dark
channel prior may sometimes fail to effectively represent the
image sparsity property. Krishnan [8] easily generates inac-
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(b) Pan&Su (c) Pan
Fig. 4. Blind deblurring of two different realistic images. The
sizes of the estimated blur kernels from top to bottom are 23 x
23 and 95 x 95, respectively.

(a) Input

(d) Ours

curate blur kernel estimations leading to poor image quality.
Experiments on text image and ocean engineering were fur-
ther implemented to evaluate the imaging performance. De-
blurring results in Fig. 4 demonstrate that our method is able
to generate superior performance for text image. In the field
of ocean engineering, the proposed method performs favor-
ably compared with the state-of-the-art deblurring methods.
The structural features and fine details could be effectively
preserved to enhance image quality. It can be concluded that
the proposed LO-regularized hybrid gradient sparsity priors
are beneficial for yielding accurate blur kernel estimation and
improving final image quality.

5. CONCLUSIONS

To achieve high-quality blind deblurring, we proposed to
introduce the LO-regularized hybrid gradient sparsity priors
for robustly estimate blur kernels. The hybrid sparsity priors
were able to preserve the gradient sparsity and salient edges,
assisting in stabilizing the blur kernel estimation. Our estima-
tion method does not need any other rigorous constraints on
blur kernels and latent sharp images. The outlier-suppressing
TVLI1 model was then introduced to generate the final sharp
images. Experiments have been performed to illustrate the
good performance of our proposed method.
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