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ABSTRACT

Interior point methods have been known for decades to be
useful for the resolution of small to medium size constrained
optimization problems. These approaches have the benefit of
ensuring feasibility of the iterates through a logarithmic bar-
rier. We propose to incorporate a proximal forward-backward
step in the resolution of the barrier subproblem to account for
non-necessarily differentiable terms arising in the objective
function. The combination of this scheme with a novel line-
search strategy gives rise to the so-called Proximal Interior
Point Algorithm (PIPA) suitable for the minimization of the
sum of a smooth convex function and a non-smooth convex
one under general convex constraints. The convergence of
PIPA is secured under mild assumptions. As demonstrated by
numerical experiments carried out on a large-scale hyperspec-
tral image unmixing application, the proposed method outper-
forms the state-of-the-art.

Index Terms— Convex optimization, Large-scale prob-
lems, Interior point methods, Proximal algorithms, Hyper-
spectral unimixing.

1. INTRODUCTION

Data processing problems frequently involve the minimiza-
tion of a cost function F of a variable x belonging to Rn
where n is large, in a feasible domain defined by some convex
inequalities: ci(x) ≤ 0, i ∈ {1, . . . , p}. One way of reformu-
lating this constrained problem as an unconstrained one is to
consider the minimization of F +B, where function B is un-
bounded at the boundary of the feasible domain and thus acts
as a barrier. Interior point methods [1, 2] rely on this strategy
by setting B as a logarithmic term −

∑
i ln(−ci(.)) weigthed

by a so-called barrier parameter µ > 0. The unconstrained
minimization of this augmented criterion is then carried out
for a sequence of barrier parameter values decreasing to 0.
Following this general strategy, many approaches have been
proposed, the most commonly used being primal-dual algo-
rithms [3, 4, 5] which, under suitable assumptions, converge
superlinearly for nonlinear programming [6]. From a nu-
merical viewpoint, interior point methods have demonstrated

state-of-the-art performance on several applications, see e.g.
[7]. It should be noted that most of interior point algorithms
rely on second-order methods and, thus, usually assume that
the criterion is at least twice-differentiable.
For various ill-posed problems arising in signal processing,
the quality of the solution and its robustness against noise can
be significantly improved by adding a non-differentiable reg-
ularization term in the objective function. For instance, spar-
sity and smoothness can be promoted through the `1-norm
and the total variation semi-norm [8], respectively. Hence,
it is necessary to design efficient algorithms that can mini-
mize a non-necessarily smooth function, under constraints.
One can mention the work in [9, 10, 11] which shows that
interior point methods can cope with an `1 term by intro-
ducing additional variables or by using the subdifferential of
the `1-norm. A more efficient way of addressing arbitrary
non-differentiable functions is provided by the proximity op-
erator [12], which is the cornerstone of proximal algorithms.
Several proximal algorithms [13, 14] like the primal-dual
splitting algorithm [15] or the generalized forward-backward
splitting algorithm [16] can minimize efficiently a composite
objective function under constraints. However, they usually
do not ensure the feasibility of each iterate. In approaches
based on Bregman distances, the Euclidean norm in the prox-
imity operator is replaced by a divergence measure ensuring
the fulfillment of the constraints [17]. The computation of the
modified proximity operator can, however, be quite intricate.
In this paper we propose a Proximal Interior-Point Algorithm
(PIPA) for composite constrained optimization problems.
The main idea behind our algorithm is to combine the loga-
rithmic barrier method, which ensures the feasibility of the
iterates, with a proximal forward-backward step which deals
with a non-smooth term arising in the objective function. The
convergence of PIPA is secured under mild assumptions and
the proposed method is shown to exhibit good performance
on a large-scale hyperspectral image unmixing application.
This article is organized as follows. The optimization prob-
lem is formulated in Section 2, while the algorithm and
convergence results are given in Section 3. Finally, PIPA is
compared to several state-of-the-art algorithms in Section 4
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and a short conclusion is drawn in Section 5.

2. PROBLEM FORMULATION

2.1. Notation and definitions

Let (n, p) ∈ N2 and let JpK = {1, ..., p}. Let Γ0(Rn) denote
the set of functions which are proper, convex, lower semi-
continuous on Rn and take values in R ∪ {+∞}. We denote
by Sn++ the set of positive definite matrices in Rn×n.
We also define the proximity operator [12]: for every γ ≥ 0,
A ∈ Sn++, f ∈ Γ0(Rn), and x ∈ Rn,

proxAγf (x) = arg min
y∈Rn

(
1

2
‖y − x‖2A + γf(y)

)
. (1)

2.2. Problem formulation

Our objective is to solve the following composite optimiza-
tion problem, which is of prominent use in signal/image pro-
cessing:

P0 : minimize
x∈Rn

f(x) + g(x)

s.t. (∀i ∈ JpK) ci(x) ≤ 0
(2)

where f and g are convex, f is non-necessarily differentiable,
and g is smooth. The constraint functions (ci)i∈JpK are as-
sumed to be convex and twice-differentiable. More precise
assumptions under which convergence is secured are detailed
in Section 3.1. In the proposed approach, the constrained
problem P0 is solved via a sequence (Pµj )j∈N of uncon-
strained subproblems parametrized by the barrier coefficient
µj > 0 and defined as follows:

Pµj
: minimize

x∈Rn

f(x) + g(x) + µjb(c(x)) (3)

where c(x) = (ci(x))i∈JpK and b is the logarithmic barrier:
(∀z ∈ Rp) b(z) = −

∑p
i=1 ln(−zi) if z ∈]−∞, 0[p, +∞ oth-

erwise. As the subproblems (Pµj
)j∈N do not have an explicit

solution, we will need to solve them approximately, leading
to the optimization scheme described in the next section.

3. PROPOSED ALGORITHM

The proposed PIPA method along with its related parameters
are detailed in Algorithm 1. Let us now comment the main
steps of the algorithm. PIPA comprises two main interlocked
loops. Given j ∈ N, the inner iterations produce an approx-
imate solution to Pµj

via a proximal forward-backward step
[18]. The latter corresponds to a gradient step on the smooth
term ϕµj = g + µjb ◦ c and a proximal step on the non-
differentiable term f . The proximity operator is associated
with a variable metric Aj,k which should satisfy the follow-
ing technical condition:

Algorithm 1: Proximal Interior-Point Algorithm
(PIPA)

Let {(εi,j)j∈N}i∈J4K, (µj)j∈N satisfy Condition 3.2;
Take 0 < δ < 1, 0 < θ < 1, 0 < γ̄ and 0 < ε;
Initialize x0,0 ∈ Rn such that (∀i ∈ JpK) ci(x0,0) < 0;
for j = 0, 1, . . . do

for k = 0, 1, . . . do
Choose Aj,k according to Condition 3.1;
for l = 0, 1, . . . do

x̃lj,k = prox
Aj,k

γ̄θlf
(xj,k − γ̄θlA−1

j,k∇ϕµj
(xj,k));

Stop if (4) is satisfied;
end
xj,k+1 = x̃lj,k;
γj,k = γ̄θl;
Stop if (5)-(8) are satisfied;

end
xj+1,0 = xj,k+1;

end

Condition 3.1. For every j ∈ N (∃(νj , ν̄j) ∈]0,+∞[2) such
that (∀k ∈ N) Aj,k ∈ Sn++ and νjIn � Aj,k � ν̄jIn.

If well-chosen and easily invertible, this variable metric can
significantly improve the convergence speed for large-scale
problems. The operator proxAj,k

f can be calculated efficiently
using the dual forward-backward algorithm in [19] or its ac-
celerated version [20]. It must be emphasized that the gra-
dient of ϕµj

is not Lipschitz-continuous. Thus, the forward-
backward splitting proximal algorithm [13] needs to be asso-
ciated with a linesearch to find an appropriate stepsize γj,k
[21]. We use the linesearch method investigated in [22] (be-
ing a generalization of the one introduced in [23]). If the
cost function in P0 is smooth, then this procedure reduces to
an Armijo linesearch along the steepest direction. The back-
tracking procedure stops if

ϕµj
(x̃lj,k)− ϕµj

(xj,k)−
〈
x̃lj,k − xj,k,∇ϕµj

(xj,k)
〉

≤ δ

γ̄θl
‖x̃lj,k − xj,k‖2Aj,k

. (4)

The inner loop stops once a certain accuracy is reached for
the minimization of Pµj

. In addition, the barrier parameter is
decreased when the following criteria are met:

‖xj,k − xj,k+1‖ ≤ ε1,j (5)
1

γj,k
‖Aj,k(xj,k − xj,k+1)‖ ≤ ε2,j (6)

p∑
i=1

∣∣∣∣ci(xj,k+1)

ci(xj,k)
− 1

∣∣∣∣ ≤ ε3,j (7)

µj

∥∥∥∥∥
p∑
i=1

∇ci(xj,k)−∇ci(xj,k+1)

ci(xj,k)

∥∥∥∥∥ ≤ ε4,j . (8)
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As stated below, the sequences {(εi,j)j∈N}i∈J4K and the bar-
rier parameter (µj)j∈N have to be chosen properly to secure
the convergence of the sequence of iterates produced by PIPA
to a solution to the initial problem P0.

Condition 3.2. {(εi,j)j∈N}i∈J4K and (µj)j∈N are strictly
positive sequences converging to 0 such that (∀i ∈ J4K)
lim
j→∞

εi,j/µj = 0.

3.1. Convergence results

Under the following assumptions, we were able to prove the
convergence of PIPA:

Assumption 3.1.

(i) The set of solutions to P0 is non empty and bounded ;

(ii) f and g are in Γ0(Rn), bounded from below and
D ⊂ domf ⊂ domg where D = {x ∈ Rn|c(x) <
0} 6= ∅. Moreover, g is differentiable on its domain and
Lipschitz-differentiable, and (∀i ∈ JpK) ci ∈ Γ0(Rn) is
continuously twice-differentiable on Rn;

(iii) (∀j ∈ N) f + ϕµj
is a Kurdyka-Łojasiewicz (KL) func-

tion.

Intuitively, a function satisfies the KL property [24] when it
can be re-parametrized such that it is sharp around its station-
ary points. This property is satisfied by most of the functions
that are commonly used in signal or image processing.

Theorem 3.1. Under Assumption 3.1 and Condition 3.1,

(i) (∀j ∈ N) (xj,k)k∈N converges to a solution to Pµj
;

(ii) if in addition Condition 3.2 holds then (xj,0)j∈N is
bounded and every cluster point of it is a solution to P0;

(iii) if Condition 3.2 and strict complementarity hold, and if
there exists i ∈ JpK such that ci is strictly convex,1 then
(xj,0)j∈N converges to a solution to P0.

For the sake of brevity, proofs are not provided in this pa-
per but some ingredients can be found in [22, 4, 24]. Note
that the convergence of (xj,k)k∈N for a fixed barrier parame-
ter µj requires to develop a more general framework than in
[22] since the variable metrics (Aj,k)k∈N are only subject to a
boundedness condition. It is also worth noticing that the strict
convexity requirement in Theorem 3.1(iii) can be fulfilled by
adding a harmless constraint on the maximal value of ‖x‖2.

1Alternatively, the constraint functions can be linear provided that some
full rank property holds.

4. NUMERICAL EXPERIMENTS

4.1. Hyperspectral unmixing model

Imaging spectrometers measure the electromagnetic energy
in several spectral bands with high precision but low spa-
tial resolution [25]. Unmixing is then necessary to retrieve
the fractional abundances of the pure spectral signatures, also
called endmembers. Under the assumption that there is no
microscopic interaction between the materials, a linear mix-
ing model can be used to describe the data. The resulting lin-
ear unmixing problem can be formulated as the minimization
of a penalized least squares criterion under linear constraints
[8, 26]:

minimize
X∈Rp×n

1
2‖Y − SX‖

2
2 + κ

p∑
i=1

‖(WXi)d‖1

s.t. (∀j ∈ JnK)
p∑
i=1

Xi,j ≤ 1

(∀i ∈ JpK)(∀j ∈ JnK) Xi,j ≥ 0

(9)

where p, n and s are respectively the number of endmem-
bers, pixels and spectral bands. Y ∈ Rs×n is the observation,
S ∈ Rs×p is the library that contains the reflectance of the
endmembers in every spectral band, (∀i ∈ JpK) Xi is the ith

line of the abundance matrix which contains the percentage
of the materials in every pixel, W ∈ Rn×n is a wavelet trans-
form operator and ‖(·)d‖1 is the `1 norm of the detail wavelet
coefficients. In the rest of this section, x denotes the vector-
ization of X . The linear constraints account for the fact that,
for every pixel, the sum of all fractional abundances should
be less than one in view of atmospheric absorption [27].

4.2. Realistic data simulation

We propose to evaluate the performance of PIPA algorithm
for the resolution of Problem (9) which corresponds here to
estimating more than 3.9 × 105 variables. The observation
Y is simulated using the Urban2 data set. This data set con-
tains the reflectance spectra and abundance maps of p = 6
endmembers: asphalt, grass, tree, roof, metal, and dirt. The
spectral signatures contain s = 162 spectral bands. An ar-
tificial atmospheric attenuation is applied on the abundance
maps of size 256×256. The result of the linear mixture of the
spectral library and attenuated abundance maps is corrupted
with a zero-mean white Gaussian noise with variance equal
to 4.1× 10−3. The regularization weight κ = 10−2 has been
set such that it yields the smallest reconstruction error. We
choose an orthogonal Daubechies 4 wavelet decomposition
performed over 2 resolution levels. The algorithm is imple-
mented with the following parameters:

µ0 δ θ γ̄ η1 η2 η3 ρ ζ
0.01 0.99 0.8 0.4 105 108 108 1.5 1.02

2http://www.escience.cn/people/feiyunZHU/Dataset_GT.html
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Fig. 1. (top) SNR versus time. (bottom) Distance from the iterates
to the solution versus time.

The variable metricAj,k is simply chosen equal to∇2ϕµj
(xj,k).

The operator proxAj,k

f is computed numerically thanks to the
algorithm in [19] with an accuracy proportional to µj .
We compare PIPA with three state-of-the-art convex opti-
mization algorithms: the alternating direction method of
multipliers (ADMM) [28] which was applied to hyperspec-
tral unmixing in several works (see e.g. [8]), the primal-
dual splitting algorithm (PDS) in [15], and the generalized
forward-backward splitting algorithm (GFBS) [16]. The
algorithms are implemented on Matlab R2016b and the cal-
culations are performed on a desktop having an Intel Xeon
3.2 GHz processor and 16 GB of RAM.

4.3. Results

The unmixing quality is evaluated based on the signal-to-
noise ratio (SNR) where x̄ is the ground truth : SNR =
−20 log10 (‖xj,k − x̄‖2/‖x̄‖2). The solution to (9) cor-
responds to an SNR of 3.65 dB while solving the same
optimization problem without the regularization using the
approach from [26] gives a lower SNR of 1.96 dB. Figure
1 (top) shows that the SNR increases faster with PIPA than
with the three other algorithms. Figure 2 shows in addition
that, after running all algorithms for 13 s, the abundance map
of asphalt produced by PIPA is visually more satisfactory
than the one obtained with ADMM, while the estimates pro-
duced by PDS and GFBS are still far from the solution. The
algorithms are also evaluated based on their point-wise con-
vergence. As one can see on Figure 1 (bottom), the sequence
(xj,k)j,k generated by PIPA converges faster to its limit point

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Abundance map of Asphalt. Ground truth (a), non-
regularized solution SNR= 1.96 dB (b). After 13 s with : PIPA
SNR= 3.35 dB (c), ADMM SNR= 2.09 dB (d), PDS SNR= −4.40
dB (e), GFBS SNR= −4.21 dB (f).

x∞ (computed after a very large number of iterations) than
the iterates produced by the three other algorithms. Note that,
even if the sequences generated by ADMM, PDS, and GFBS
converge asymptotically to a feasible point, after 13 s, the
distance between their iterates and the feasible set is nonzero
(4.3, 1.9, 0.1, resp.). It is finally worth noticing that in this
example the proximity operator has been approximated, but
PIPA appears to be robust to the consequential error.

5. CONCLUSION

This paper has introduced a new method to minimize a sum of
two convex functions, one being non-smooth, subject to con-
straints. This algorithm compares favorably with the state-of-
the-art on a large-scale image processing problem. One future
direction for further improvements is to investigate theoreti-
cally the effect of an inexact proximity operator implementa-
tion. Another lead is to remove the convexity assumptions so
as to enlarge the application field of the proposed approach.
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