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ABSTRACT
Group activity recognition in videos is a challenging task,
with two major issues, i.e. attending to those persons and
their body parts that contribute significantly to the activ-
ity, and modeling contextual person structures in the group.
Most previous approaches fail to provide a practical solution
to jointly address both issues, however. In this paper, we
propose to simultaneously deal with both issues via a hier-
archical attention and context modeling framework based on
Long Short-Term Memory (LSTM) networks. For the for-
mer, we propose ‘Hierarchical Attention Networks’ applied
at the part/person level, capable of attending distinctively
to different persons and their body parts. For the latter, we
build ‘Hierarchical Context Networks’ that take the atten-
tively pooled person-level features as input and recurrently
model intra/inter-group contextual structures. The attentive
and contextual representations are concatenated and fed into
another LSTM to generate high-level discriminative tem-
poral representations for group activity recognition. Exten-
sive experiments on two widely-used group activity datasets
demonstrate the effectiveness and superiority of the proposed
framework.

Index Terms— Group Activity Recognition, Visual At-
tention, Context Modeling, LSTM Networks

1. INTRODUCTION

Human activity recognition in videos [1, 2, 3, 4, 5] has at-
tracted extensive research interests in the past few years,
where recognition of high-level group activities is a very
challenging task. Group activity recognition facilitates many
real-world applications, e.g. intelligent video surveillance,
anomalous event detection and tactics analysis in sports
video. Previous approaches attempt to address this problem
by modeling the contextual information using local contex-
tual descriptors [6, 7] and graphical models [8, 9, 10]. Choi
et al. [6] extract contextual descriptors from a person and
the surrounding area to recognize group activities, which are
further enhanced in [7] via structure learning. Lan et al. [9]
propose a graphical model by considering interactions on the
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social role level. Moreover, Lan et al. [10] model an adaptive
structure adjustable to the most discriminative interactions.
However, all the above models are based on traditional learn-
ing strategies (e.g. linear models) using hand-crafted features,
and thus suffer from representational limitations.

Recently, several deep learning approaches [11, 12, 13]
have been proposed to model group contextual structures
and these achieved better performances than traditional ones.
Typically, they model individual actions and group activi-
ties sequentially using Recurrent Neural Networks (e.g. the
LSTM networks [14]), where max/average pooling is adopted
to aggregate person-level features. In other words, different
people are paid comparable attention to. Yet, different people
contribute to different degrees to the overall group activ-
ity. For instance, for a ‘serving’ action in volleyball, more
attention ought to be paid to the server than the other players.

Based on the above considerations and inspired by the
recent advance in document analysis [15, 16, 17], we pro-
pose a hierarchical soft-attention mechanism using LSTM
to attach variable levels of importance to different persons
and their distinct body parts, i.e. attention-aware pooling of
part/person-level features. Unlike [13] who only consider
person-level attention, we simultaneously also capture part-
level attention, in the same way as attention based document
analysis. There both sentence-level and word-level attentions
are applied and performance was significantly improved by
the hierarchical attention strategy [17].

In addition, as stated in [18], modeling intra-group con-
textual information (e.g. interaction within the same team in
a volleyball game) is far from enough, and inter-group context
(e.g. interaction between the two teams) needs to be explored
as well. In [18], a recurrent encoding scheme is introduced to
deal with intra/inter-group interactions. But it is not end-to-
end trainable due to the additional context encoding step. In
this paper, we perform the grouping/partition operation simi-
lar to [18], but in such a way that intra/inter-group context is
modeled. More specifically, we propose ‘Hierarchical Con-
text Networks’ (HCNs) that model intra/inter-group contex-
tual information in a fully recurrent fashion without any addi-
tional operations, thus making it end-to-end trainable.

As shown in Fig. 1, we further integrate the above two
networks in a sequential manner. We start with the Hi-
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Fig. 1: The overall framework of our approach. Given human tracklets, the Hierarchical Attention Networks first attend to
persons and their body parts. HANs adopt AttLSTM cells [19], where Vt denotes the feature to be attended to. The box
thicknesses reflect the attention weights1. The Hierarchical Context Networks take the weighted person-level features Pt as
input and extract intra/inter-group contextual features. The concatenated features (i.e. person-level attentive and group-level
contextual features) are fed into another LSTM that makes the final prediction, where ⊕ indicates the concatenation operation.

erarchical Attention Networks (HANs), which extend the
original LSTM with a soft attention mechanism [19] and
learn different levels of attention for different persons and
their body parts as the group activity proceeds. Person-level
features are pooled attentively with respect to the learned
part/person-level attention weights. Subsequently, the HCNs
take the person-level features as input and recurrently out-
put intra/inter-group contextual features based on two-stage
LSTM networks. Note that with the help of the attention
mechanism, the persons/parts attended to explicitly enhance
the contextual features. For example, in a ‘set’ activity, the
setter and his/her arms contribute more than the surround-
ings and other body parts in building the contextual features.
Finally, the person-level attentive features and group-level
contextual features are concatenated into the final frame-level
descriptions, which are then fed into another LSTM to gen-
erate a high-level temporal representation for recognizing
group activities. Extensive experiments on two benchmarks
(i.e. the Collective Activity Dataset and Volleyball Dataset)
demonstrate the effectiveness and superiority of the proposed
framework over the state-of-the-art.

2. APPROACH

Given video sequences of group activities, we first utilize the
tracker by Danelljan et al. [20] to obtain human tracklets
(e.g. a sequence of tracked human bounding boxes). Based on
these tracklets, we propose a hierarchical attention and con-
text modeling framework to extract attention/context-aware
descriptions for group activity recognition.

Basically, we derive our HANs and HCNs from a variant
of Recurrent Neural Networks, i.e. LSTM. Each LSTM cell
is composed of three gates (i.e. input gate i, output gate o
and forget gate f ) and a memory cell ct. In each time step

1For simplicity, the attended body parts of persons are not shown here.

t, given the input xt and the previous hidden state ht−1, the
LSTM cell outputs an updated hidden state ht. Owing to the
gates and memory cell, LSTM is capable of learning long-
term dynamics. Please refer to [14] for more technical details.

2.1. Hierarchical Attention Networks

The HANs can automatically explore different degrees of im-
portance for persons and their body parts. In particular, the
networks can attend to salient parts of persons (part-level) as
well as to relevant persons in the group (person-level). We use
the attention LSTM cell [19] (AttLSTM in Fig. 1), a variant
of the soft attention model from [21] because of its better per-
formance, and extend it to accept video sequences as input.

When applying part-level attention, in each time step
we equally divide each person into K parts and represent
him/her as Vt = (vt,1, . . . , vt,K), where vt,i ∈ Rd indi-
cates the feature of the ith part of a person. Given Vt and
the hidden state ht of the part-level AttLSTM, the scores
αt = (αt,1, . . . , αt,K) indicating the importance of K parts
are jointly obtained as follows:

st = wT
h (tanh(WvVt +Whht)), αt,k =

exp(st,k)∑K
i=1 exp(st,i)

,

(1)
where Wv , Wh and wh are the learnable network parame-
ters. Based on the above scores, the feature ct of a person
attended to can be computed as ct =

∑K
i=1 αt,ivt,i. We

further combine the current hidden state ht and ct in each
time step to obtain the representation ut of each person, i.e.
ut = ct ⊕ ht. The averaged outputs of all time steps are fed
into a softmax layer (i.e. a fully connected layer with softmax
activation function) to calculate the probability of an action:

ya = softmax(Wp(
1

T

T∑
t=1

ut)), (2)
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where T is the total number of time steps, and Wp is the
learnable weight parameter.

When learning person-level attention, we treat the activity
of a group as a series of person-level actions. In each time
step, a group can be represented by Ut = (ut,1, . . . , ut,N ),
where ut,j is the feature of the jth person in the group of
totally N people. Similarly, the attention weights βt =
(βt,1, . . . , βt,N ) of different persons are calculated as

ŝt = ŵT
h (tanh(WuUt + Ŵhĥt)), βt,n =

exp(ŝt,n)∑N
j=1 exp(ŝt,j)

,

(3)
where Wu, Ŵh and ŵh are the network parameters to learn,
and ĥt is the current hidden state of the person-level AttL-
STM. In each frame, the final representation of the jth person
in a group after HANs is pt,j = βt,jut,j . Similar to Eq. (2),
the probability of a group activity can be computed using a
softmax layer:

yg = softmax(Ŵp(
1

T

T∑
t=1

(

N∑
j=1

pt,j + ĥt))). (4)

Note that the two-stage (i.e. part-level and person-level)
attention networks can be trained jointly. We formulate the
final objective function of HANs as a joint cross-entropy loss:

L = −λ1

N∑
n=1

C1∑
l1=1

ya,n,l1 logŷa,n,l1 − λ2

C2∑
l2=1

yg,l2 logŷg,l2 , (5)

where C1 and C2 are the class numbers of individual ac-
tions and group activities respectively, ŷa,n,l1 and ŷg,l2 are
the one-hot-encoded ground truth of actions and activities re-
spectively, and λ1 and λ2 are trade-off parameters.

2.2. Hierarchical Context Networks

As [18] mentioned, besides modeling the intra-group contex-
tual information (e.g. the evolution of person-level action dy-
namics within the same volleyball team), it is also critical to
capture group to group context (e.g. interaction between two
teams). To this end, we build the HCNs to model intra/inter-
group contextual structures simultaneously. We first partition
the original group into subgroups in a principled way (which
will be elaborated in our experiments). Then, to model the
context dependency within a group, we order the persons in a
subgroup into a sequence and feed it into LSTM. We conduct
a simple yet effective ordering operation, i.e. aligning person-
level features by the x or y coordinates of the respective track-
lets (we adopt the x coordinate due to its better performance
in our experiments). In the tth time step, the persons within
the mth group can be depicted as Pm

t = (pmt,1, . . . , p
m
t,Nm

),
where Nm denotes the total number of people in this group.
Pm

t is then fed into the intra-group LSTM networks to obtain
the contextual representation of the mth subgroup.

The inter-group structure is modeled in a similar way.
Specifically, the subgroup-level representations are first or-
dered by the x or y coordinates of the geometric centers of

each subgroup and fed to inter-group LSTM networks, whose
output serves as the group-level contextual feature Gt. In
each time step, the global description of group activities con-
sists of two parts, i.e. person-level attentive features of sub-
groups (Zt) and group-level contextual features (Gt). To ob-
tain Zt, features of all people within a subgroup are first at-
tentively pooled and then concatenated across all subgroups
to form Zt. Finally, the global description passes through an-
other LSTM layer. The hidden state hg of this LSTM layer
carries high-level temporal information with visual attention
and contextual structure. hg is fed into a softmax classifica-
tion layer with cross-entropy loss to predict group activities.

3. EXPERIMENTAL RESULTS

We evaluate our framework on two widely-adopted bench-
marks, i.e. the Collective Activity Dataset [6] and Volleyball
Dataset [11]. We first depict our implementation details and
then compare our method with the state-of-the-art ones.

Implementation Details: We adopt the GoogLeNet [22]
pre-trained on the ImageNet [23] and extract the 1024×7×7
feature map for a person from the last convolutional layer.
We train our hierarchical networks in two steps. For HANs,
we pre-train the attention modules w.r.t. persons and their
body parts, resp., to ensure the convergence. The whole train-
ing process of HANs includes three steps: training the part-
level networks, fixing the parameters of part-level networks
to train the person-level networks, and training the hierarchi-
cal networks jointly. As for HCNs, in each time step, we or-
ganize the attentively pooled person features into subgroups,
and then feed them into HCNs to generate contextual features
recurrently. The intra/inter-group features are concatenated
and fed into the final LSTM networks followed by a softmax
classification layer, which makes the whole context networks
end-to-end trainable without any additional encoding steps as
in [18]. In all the experiments, we set λ1 = 1 and λ2 = 2,
and use stochastic gradient descent with ADAM [24], with
the initial learning rate set to 10−5.

Baselines: In addition to the state-of-the-art methods, we
compare our method with the following baselines:

1) B1 (w/o HANs): We replace HANs in our framework
with 2-layer LSTM similar to [11], followed by our HCNs.

2) B2 (w/o HCNs): We remove HCNs in our framework.
In other words, only the attention features are used for classi-
fication without any context modeling.

Table 1: Results on the Collective Activity Dataset.

Methods Accuracy
Structure Inference Machines [25] 81.2%
Cardinality Kernel [26] 83.4%
CERN-2 [12] 87.2%
Two-stage Hierarchical Model [11] 81.5%
B1 (w/o HANs) 83.1%
B2 (w/o HCNs) 82.3%
Ours (HANs+HCNs) 84.3%
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3.1. Results on the Collective Activity Dataset

The Collective Activity Dataset [6] contains 44 short video
sequences of 5 different collective activities, and provides
8 pairwise interaction labels (not used in our work) and 6
person-level action labels. We adopt the same experimental
setting as [26]. For tracklets grouping/partition, we employ
the graph partition algorithm in [27]. There are 1024 hidden
units in the LSTM layers of the two networks (HANs and
HCNs) and 512 units in the last LSTM layer.

Table 1 shows the comparison results. Clearly, our hierar-
chical model outperforms the two baselines, which shows that
incorporating either visual attention or contextual structure
can improve the performance, and the combination of them
further boosts the accuracy. The performance gain is more
obvious w.r.t. B2, indicating the key role of our hierarchi-
cal context modeling. Meanwhile, our results are superior to
conventional structure learning models and most deep learn-
ing ones. Note that although [12] achieves better results, they
use additional manually annotated context (i.e. interaction la-
bels), which contributes significantly to recognizing collec-
tive activities. We show a qualitative example in Fig. 2 to
illustrate our attention mechanism. As can be seen, important
persons and body parts are paid more attention to. We also
show the confusion matrix in Fig. 4 (a), where queue and talk
are nearly 100% recognized. On the other hand, a small frac-
tion of cross and wait is mistaken as walk, because they share
similar visual features.

3.2. Results on the Volleyball Dataset

The Volleyball Dataset [11] consists of 4830 frames from 55
videos with 9 player actions and 8 group activities. We follow
the train/test split and subgroup partition suggested by [11].
For each action/activity, we use a temporal window of length
T = 10, which corresponds to 5 frames before the annotated
frame, and 4 frames thereafter. We use 2048 hidden units
for the LSTM layers of two networks (HANs and HCNs) and
1024 units for the last LSTM layer.

The accuracies of different methods are summarized in
Table 2. It can be observed that the proposed approach clearly
outperforms the state-of-the-art ones, indicating the effective-
ness of the combination of visual attention and contextual
structure. More interestingly, without attention networks (i.e.
B1) we already achieve better performance than the state-of-
the-art ones. In terms of baseline methods, the performance
of B2 is improved prominently by modeling intra/inter-group

Table 2: Results on the Volleyball Dataset.

Methods Accuracy
CERN-2 [12] 83.3%
Two-stage Hierarchical Model [11] 81.9%
B1 (w/o HANs) 84.1%
B2 (w/o HCNs) 82.5%
Ours (HANs+HCNs) 85.1%

Fig. 2: Qualitative results on the Collective Activity Dataset.
The colors of the bounding boxes indicate action labels
(green: walking, yellow: standing)2.

Fig. 3: Qualitative results on the Volleyball Dataset. The col-
ors of the bounding boxes indicate action labels (green: stand-
ing, yellow: blocking, red: spiking, purple: digging)2.
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Fig. 4: Confusion matrices for the two datasets.

context. This is mainly because activities in volleyball games
involve more discriminative contextual structures. Fig. 3 il-
lustrates an example of left-spike, where we can see more
structured activities and the success of our attention mecha-
nism. We also provide the confusion matrix in Fig. 4 (b) to
illustrate our ability to recognize different individual actions.

4. CONCLUSION
In this paper, we propose a hierarchical attention and con-
text modeling framework for group activity recognition. The
HANs pay different levels of attention to different persons and
their distinct body parts, and HCNs model both intra-group
and inter-group contextual information. By integrating visual
attention and contextual structure, the proposed framework
can generate more discriminative descriptions for group activ-
ities. Extensive experiments on two datasets clearly demon-
strate the superiority of the proposed framework.

Acknowledgement
This work was supported by the National Natural Science
Foundation of China (61573045). Luc Van Gool acknowl-
edges support by CHIST-ERA project MUSTER.

2The thickness of each bounding box reflects the attention weight.

1331



5. REFERENCES

[1] J.K. Aggarwal and M.S. Ryoo, “Human activity analysis: A
review,” CSUR, vol. 43, no. 3, pp. 1–43, 2011.

[2] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin,
Xiaoou Tang, and Luc Van Gool, “Temporal segment net-
works: Towards good practices for deep action recognition,”
in ECCV, 2016.

[3] J. Qin, L. Liu, Z. Zhang, Y. Wang, and L. Shao, “Compressive
sequential learning for action similarity labeling,” IEEE TIP,
vol. 25, no. 2, pp. 756–769, 2016.

[4] J. Qin, L. Liu, L. Shao, B. Ni, C. Chen, F. Shen, and Y. Wang,
“Binary coding for partial action analysis with limited obser-
vation ratios,” in CVPR, 2017.

[5] J. Qin, L. Liu, L. Shao, F. Shen, B. Ni, J. Chen, and
Y. Wang, “Zero-shot action recognition with error-correcting
output codes,” in CVPR, 2017.

[6] Wongun Choi, K. Shahid, and S. Savarese, “What are they
doing? collective activity classification using spatio-temporal
relationship among people,” in ICCV, 2009.

[7] Wongun Choi, Khuram Shahid, and Silvio Savarese, “Learning
context for collective activity recognition,” in CVPR, 2011.

[8] Wongun Choi and Silvio Savarese, “A unified framework for
multi-target tracking and collective activity recognition,” in
ECCV, 2012.

[9] Tian Lan, Leonid Sigal, and Greg Mori, “Social roles in hi-
erarchical models for human activity recognition,” in CVPR,
2012.

[10] Tian Lan, Yang Wang, Weilong Yang, Stephen N. Robinovitch,
and Greg Mori, “Discriminative latent models for recognizing
contextual group activities,” IEEE TPAMI, vol. 34, no. 8, pp.
1549–1562, 2012.

[11] Mostafa S. Ibrahim, Srikanth Muralidharan, Zhiwei Deng,
Arash Vahdat, and Greg Mori, “Hierarchical deep tempo-
ral models for group activity recognition,” arXiv preprint
arXiv:1607.02643, 2016.

[12] Tianmin Shu, Sinisa Todorovic, and Song-Chun Zhu, “CERN:
confidence-energy recurrent network for group activity recog-
nition,” in CVPR, 2017.

[13] Vignesh Ramanathan, Jonathan Huang, Sami Abu-El-Haija,
Alexander N. Gorban, Kevin Murphy, and Li Fei-Fei, “Detect-
ing events and key actors in multi-person videos,” in CVPR,
2016.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray
Kavukcuoglu, “Recurrent models of visual attention,” in NIPS,
2014.

[16] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio,
“Neural machine translation by jointly learning to align and
translate,” arXiv preprint arXiv:1409.0473, 2014.

[17] Nikolaos Pappas and Andrei Popescu-Belis, “Hierarchical at-
tention networks for document classification,” in NAACL-HLT,
2016.

[18] Minsi Wang, Bingbing Ni, and Xiaokang Yang, “Recurrent
modeling of interaction context for collective activity recogni-
tion,” in CVPR, 2017.

[19] Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher1,
“Knowing when to look: Adaptive attention via a visual sen-
tinel for image captioning,” in CVPR, 2017.

[20] Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and
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