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ABSTRACT
Millions of surveillance cameras are currently installed in

public places around the world, making it necessary to intel-

ligently analyse the acquired data to detect the occurrence of

abnormal events. A vast number of methods to detect such

events have been recently proposed; unfortunately, there is a

lack of methods capable of detecting these events as frames

are acquired, also known as online processing. In this paper,

we present an online framework for video anomaly detection

that employs binary features to encode motion information,

and low-complexity probabilistic models for detection. Eval-

uation results on the popular UCSD dataset and on a recently

introduced real-event video surveillance dataset show that our

framework outperforms non-online and online methods.

Index Terms— Video anomaly detection, online process-

ing, binary features, surveillance video.

1. INTRODUCTION

Big data continues to grow exponentially and surveillance

video has become one of the largest sources [1]. This is

evident by the increasing number of surveillance cameras

throughout our surroundings, e.g., in elevators, ATMs, and

other public places. To fully exploit the data acquired by

these cameras, it is important to develop automatic video

surveillance methods capable of intelligently analyzing and

understanding the visual information. At the core of auto-

matic video surveillance is anomaly detection, which aims

at detecting unusual events without any a priori knowledge.

Such events may include riots, robberies, fights, traffic acci-

dents and other dangerous situations [2, 3].

Despite its many advantages, video anomaly detection is

still far from being practical in real-time scenarios due to its

high computational complexity. Many state-of-the-art video

anomaly detection methods are not capable of classifying

frames as they are acquired at a specific frame rate. Conse-

quently, the data are usually manually analyzed in real-time,

hindering the benefits of current surveillance cameras [2].

The long computational times of many existing methods

are mainly due to the operations required to 1) extract fea-

ture descriptors from the data, and 2) process these features
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descriptors by trained classifiers. Developing low-complexity

feature descriptors and classifiers is a key aspect that can in-

crease the practicality of video anomaly detection methods

for online processing [2, 3]. In this paper, we then propose

a video anomaly detection framework suitable for online pro-

cessing. The contributions of our work are: (I) Two sources

of motion are used to classify events; i.e., background and

temporal gradients. (II) The background is encoded only for

regions depicting foreground, thus reducing this type of fea-

tures. (III) The temporal gradients are encoded into binary

features, which are known to be fast to compute and pro-

cess. (IV) Event detection is attained by using multiple low-

complexity probabilistic models.

The proposed framework is tested on the UCSD dataset

and on the LV dataset, which is a new collection of surveil-

lance videos depicting real events. Results show that our

framework attains online processing outperforming other on-

line methods, particularly on real surveillance videos. The

rest of the paper is organized as follows. Section 2 reviews

common techniques used to detect abnormal events in videos.

Section 3 details our proposed framework. Section 4 presents

the evaluation results and Section 5 concludes the paper.

2. PREVIOUS WORK

Video anomaly detection usually relies on analyzing and

modeling the motion information of several spatio-temporal

support regions compacted into feature descriptors. Com-

mon sources of motion information include optical flow [4–

7], temporal gradients [2, 8], and dynamic textures [9, 10].

Methods commonly used to define spatio-temporal regions

include those based on dense sampling [2, 8], Hessian con-

volution [5, 6], and fixed-size cells [11, 12]. Modeling these

spatio-temporal support regions is usually done via dictionary

modeling [2, 5–8] and sparse reconstructions [4, 7, 9, 10] that

evaluate the likelihood of a particular observation as a statistic

inference problem. Although state-of-the-art video anomaly

detection methods can attain an outstanding performance

[2, 4, 11, 13], long computational times and high demands

for computational resources make them unsuitable for online

processing [2, 4, 11, 12]. On the other hand, methods aimed

at attaining online processing, e.g., [14, 15], significantly

sacrifice accuracy by reducing the complexity of their motion
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Fig. 1. Proposed framework. The temporal gradients and background of frames are calculated. Interest points are detected by using the

FAST detector. Binary encoding then generates binary features, which are used to create dictionaries. GMMs are used to model all binary

features and those obtained by computing the foreground occupancy. An inference mechanism that uses GMM votes detects abnormal events.

sources, feature descriptors and classifiers.

3. PROPOSED FRAMEWORK

Our framework 1 is graphically depicted in Fig. 1. It first

extracts features from the scene, which are used to construct

a visual dictionary and several probabilistic models. It then

uses an inference mechanism to detect abnormal events.

3.1. Feature Extraction

Features are computed from two motion sources: the back-

ground and temporal gradients. For both, we define spatio-

temporal support regions of different size by using a grid of

cells divided into three regions, {R1, R2, R3} (see Fig. 2a).

Cells of different size help to compensate for the apparent

change of objects’ size as they approach the camera, under

the assumption that the lower part of the scene is closest to

the camera [3, 12, 16]. This allows us to avoid using a multi-

scale procedure, as in [2, 8, 13].

Background: We create a video volume uq of size nx ×
ny × nt for each cell of the grid (see Fig. 2a). We then com-

pute the foreground occupancy, Oq ∈ R
1, of uq as follows:

Oq(uq) =
1

N

∑
0<n�N

u(n)
q , (1)

where N is the number of pixels in uq . Only those video vol-

umes with a foreground occupancy ≥ 10% are further pro-

cessed, which helps to reduce computational times.

Temporal gradients: To detect interest points, we use the

binary detector Fast Accelerated Segmentation Test (FAST),

whose computational times are in the order of milliseconds

per frame [17]. As illustrated in Fig. 2b, each FAST point

defines the center (xp, yp) of a video volume, vp, of size

nx×ny×nt, where the spatial size nx×ny is determined by

the cell in which the FAST point is detected. Encoding vp by

employing double-precision feature descriptors; e.g., HOG,

HOF, and MBH [18, 19], results in very computationally ex-

pensive subsequent steps [4]. For this reason, we employ bi-

nary features to reduce processing times. Specifically, we en-

code vp by using the binary descriptors Binary Wavelet Dif-

ferences (BWD) and Binary Centroid Tracker (BCT) [20, 21],

1End-to-end implementation available at: https://cvrleyva.
wordpress.com/

Fig. 2. Motion sources and feature extraction. a) Foreground Oc-

cupancy is extracted from the background. b) The FAST detector

is applied to the temporal gradient and the spatio-temporal support

regions are encoded with BWD and BCT.

which can encode video volumes in the order of microsec-

onds.

To capture the vertical and horizontal motion components

of vp, we first apply two Prewitt differential operators to vp to

generate video volumes vxp and vyp . We then encode vxp and vyp
by using BWD, which generates a binary string, Gn

p , by com-

paring the values of M = 32 pairs of regions defined within

vnp , with n ∈ {x, y}. Each pair Pm groups pixel locations

into one of two regions according to a wavelet pattern (see

Fig. 3a). Each bit of string Gn
p is computed as follows:

C(Pm) =

{
1, if Σ(P 1

m) > Σ(P 2
m)

0, otherwise
, (2)

where Σ(P r
m) represents the sum of values of region r ∈

{1, 2}. Gn
p is then the concatenation of the M comparisons:

Gn
p =

∑
0�m<M

2mC(Pm). (3)

It is important to note that the displacements in time of

the centroid of video volume vp generate a trajectory. We
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Fig. 3. a) Sample patterns used in BWD to define two regions within

a video volume. b) Bins used in BCT to encode trajectory T̂p.

use BCT to encode this trajectory into a binary string. The

centroid of vp at time t, denoted by ct, is first computed as:

ct = (
m10

m00
,
m01

m00
), mab =

∑
1�x�nx
1�y�ny

xaybvp(x, y, t), (4)

and the normalized trajectory T̂p, comprising L displacement

vectors, Δct...Δct+L−1, is computed as follows:

T̂p =
(Δct, ...,Δct+L−1)

max‖Δct‖ . (5)

BCT encodes each normalized displacement vector of T̂p,

i.e., each Δĉt = Δct/max‖Δc‖, by using a binary binning

scheme:

B(Δĉt) =

⎧⎪⎨
⎪⎩
k : argmink ‖ Δĉt − bk ‖ : |Δĉt| ∈ (ε, 1− ε)

15 : |Δĉt| ≥ 1− ε

0 : |Δĉt| ≤ ε
(6)

where bk is the kth bin representing a direction of Δĉt (see

Fig. 3b). Displacements with magnitudes ∈ (ε, 1− ε) are en-

coded into one of six 4-bit strings according to their direction,

where the index of bk is the decimal representation of such 4-

bit string; while those displacements with magnitudes outside

this range are encoded as 1111 or 0000, as they represent dis-

placements with unstable directions. The binary string, Fp,

representing trajectory T̂p is then the concatenation of the L
encoded displacements:

Fp =
∑

0�t<L

24tB(Δĉt). (7)

The final binary string, Ep, representing video volume vp is

the concatenation of Fp with two BWD strings, Gx
p and Gy

p:

Ep = Fp ++ Gx
p ++ Gy

p. (8)

3.2. Probabilistic Models

We generate three probabilistic models for the extracted fea-

tures: one dictionary model, one local neighbourhood his-

togram model and one foreground occupancy model.

Dictionary model: we create independent visual dictio-

naries of the binary features, Ep. To this end, we define a

region S : xp − 10 : xp + 10 and yp − 10 : yp + 10 for each

FAST point represented by Ep, and cluster all FAST points

within S by k-means. Each cluster’s centroid, zi, is:

zi : argmin
S

k∑
i=1

∑
Ep∈S

Ep ⊗ zi. (9)

Dictionary voting is evaluated via a Gaussian Mixture Model

(GMM) with parameters θ = {πk, μk, σk}, representing, re-

spectively, the weight, mean and standard deviation of the kth

component:

pDIC(dEp | θ) =
∑
k

πkN (dEp | μk, σk), (10)

where dEp is the Hamming distance of the word Ep ∈ S to

the closest dictionary centroid. It is important to notice that

binary features make this procedure remarkably fast.

Local neighborhood histogram model: We capture lo-

cal word compositions via histograms. We first compute the

frequency of the label lp, which defines the matching of Ep to

the closest centroid within a dictionary. For each local neigh-

borhood S, a histogram HS is then generated representing the

frequency of all matching labels. All histograms generated for

all the local neighborhoods are then clustered via k-means,

and their distance dHS
to the closest centroid is modeled via

a GMM with k components:

pH(dHS | θ) =
∑
k

πkN (dHS | μk, σk). (11)

Foreground occupancy model: For each region {R1, R2, R3}
(see Fig. 2a), we generate a GMM with k components to

model foreground occupancy features:

pO(Oq | θ) =
∑
k

πkN (Oq | μk, σk). (12)

For all GMMs, the best number of components is obtained by

iterating over the Akaike Information Criterion [3].

3.3. Inference Mechanism

The inference mechanism is based on the GMM votes (Eq.

10 - 12) given the newly observed features. The models used

for the temporal gradients (Eq. 10, 11) and that used for the

background (Eq. 12) generate two masks, MTG and MBG,

respectively. If the values in these masks are greater than

thresholds γTG and γBG, respectively, the corresponding re-

gions are deemed to be abnormal:

MTG = − log
(∏

(pDIC) (pH)
)
> γTG, (13)

MBG = − log (pO) > γBG. (14)

The corresponding frame is labeled by using a joint criterion:

A = MTG ∨MBG. (15)

The binary mask A depicts the abnormal regions in the la-

belled frame. Note that either the temporal gradients or the
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Fig. 4. Events detected (in green). 1st row: UCSD Peds1 (frames 1-3) and Peds2 (frames 4-6). 2nd row: LV dataset. The zoomed-in RoI is

shown next to the corresponding labeled frame. Events are (left to right): a car accident, a motorcycle theft and vandalism outside a store.

Fig. 5. RoI-level ROC performance for the LV dataset.

background may trigger the inference mechanism. To im-

prove performance, we set the thresholds in Eq. 13, 14 on

a per-region basis, where each region Rn with n ∈ {1, 2, 3}
is assigned a pair of thresholds, γTG and γBG. This is based

on the significance vote variance observed across the regions.

We set the thresholds for a region to the lowest votes given by

the individual GMM models for that region during training.

During testing, we multiply the lowest probability observed

during training by a constant < 1 to detect abnormal events.

4. EXPERIMENTS AND DISCUSSIONS

To rank our framework and compare it with existing methods,

we first employ the UCSD Peds1 and Peds2 [22] datasets. We

compare our framework against some of the best-performing

non-online methods [2, 4, 6, 10, 12, 13]; and two state-of-

the-art online methods [14, 15]. Results for this dataset are

reported in terms of the Equal Error Rate (EER). The EER

describes the rate of misclassified frames, i.e., it becomes

smaller as the system correctly identifies abnormal frames.

If the EER increases, the system is not detecting abnormal

frames (False Negatives) or is incorrectly detecting abnormal

frames (False Positives). Table 1 shows that our framework

achieves competitive performance compared to non-online

methods and outperforms online methods, particularly at the

pixel level. Our framework detects the non-pedestrian entities

(cars, bikes and trollies) accurately, as Fig. 4 shows, first row.

We also rank our framework on the real events of the LV

dataset [23], which consist of 28 real surveillance videos cap-

turing a variety of events including robberies, car accidents,

Table 1. Equal Error Rate (EER) for UCSD Peds1/Peds2.

Authors
EER

Frame level

EER

Pixel level

Frame

processing time

On-line

performance

Bertini et al.[13] 31/32 – 125 ms

Reddy et al. [12] 22.5/20 32/– 140 ms

Hu et al. [10] 18/15 36/– 200 ms

Javan and Levine [2] 15/13 27/26 220 ms

Cheng et al. [6] 19.9 38.8 1100 ms

Cong et al. [4] 23/– 51.2/– 3800 ms

Lu et al. [14] 15/22.3 59.1/49.8 6 ms �
Biswas and Babu [15] 24.66/29.6 50.95/42.3 14 ms �
Proposed 25.34/21.2 48.1/38.4 26 ms �

and kidnappings. A frame is deemed to be correctly detected

as abnormal if at least 20% of the region of interest (RoI) is

detected. For this dataset, we compare our framework against

the online methods in [14, 15]. The Receiver Operating Char-

acteristic (ROC) curves for these methods are depicted in Fig.

5. We observe that our framework achieves the greatest Area

Under the Curve (AUC) and the smallest EER, which demon-

strates significantly better detection rates than the other online

methods. Our framework is capable of detecting the major-

ity of events with competitive accuracy (see Fig. 4, second

row). Note how our framework can detect very small RoIs

very accurately thanks to defining video volumes of differ-

ent size by using a grid of variable-size cells. Even though

our framework is slower than the other methods, it achieves

better EER/AUC performance while attaining online process-

ing. This aspect reveals our framework’s good compromise

between detection accuracy and frame processing times.

5. CONCLUSIONS

We have proposed an online framework to detect abnor-
mal events in videos with competitive accuracy and short
processing times. Our framework uses binary features to
encode temporal gradients, in conjunction with foreground
occupancy features, to accurately classify events by relying
on low-complexity probabilistic models. Evaluations on the
UCSD dataset show that our framework outperforms other
online methods, while achieving competitive results com-
pared to non-online methods. Evaluations on the LV dataset,
which comprises real surveillance videos, also show that our
framework outperforms online methods.
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