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ABSTRACT
To efficiently process and understand a large amount of in-
coming visual information from first-person perspective (i.e.
egocentric vision), predicting human gaze is important. How-
ever, even though people continuously gaze in noisy environ-
ments, most existing gaze prediction methods mainly use im-
age saliency, which is sensitive to noise in the real-world. To
address this issue, we propose a sparse coding-based saliency
detection method for gaze prediction. Our model uses a cost
function with the l0 norm as a sparse constraint that can con-
trol the area of visual saliency in response to the contents of
egocentric vision in intuitive and consistent ways. Moreover,
we use canonical correlation analysis (CCA) to combine dif-
ferent types of features for reducing noise and the computa-
tional complexity. We also utilize the temporal continuity of
image frames when defining our saliency. Experiments using
a real-world gaze dataset show that our proposed approach
outperforms the state-of-the-art algorithms on gaze prediction
in egocentric videos.

Index Terms— Gaze prediction, egocentric video, saliency
detection, sparse modeling, canonical correlation analysis
(CCA).

1. INTRODUCTION

Human gaze is an important function for a person to sense
the visual world through a series of fixations [1]. Predicting
such human gaze is useful for many applications that need
to extract the most significant regions in an image or video
frame, such as surveillance and robotic vision. In this paper,
we tackle the problem of egocentric gaze prediction, which is
the task of predicting the user’s perspective gaze given a video
from the first-person perspective (i.e. egocentric vision). The
egocentric vision is different from the third-person vision in
that it is noisier and more unstable because of the head shakes
of the user, and thus special considerations are required to
design algorithms for it.
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To predict human gaze, many works have proposed visual
saliency detection algorithms; however, these are designed for
still and third-person images and thus sensitive to noise and
instability in egocentric videos. Itti et al. [2] have proposed
a saliency model based on the feature integration theory that
extracts early visual features (e.g., colors, orientations, and
edges) and fuses them into a saliency map. Harel et al. [3]
have proposed a bottom-up visual saliency model called
graph-based visual saliency (GBVS), which forms activation
maps on certain feature channels, normalizes them in a way
that highlights outstanding areas, and combines with other
maps. Li et al. [4] have built a dictionary-based framework
that constructs saliency and non-saliency dictionaries from
stacked feature vectors and detects saliency with a weighted
sparse coding framework, which is called the weighted sparse
coding framework (WSCF). However, even though a person
continuously gazes in the noisy environment, most existing
gaze prediction methods use image saliency, which is sensi-
tive to noise in the real world. Moreover, Li et al. [4] uses the
sparsity with l1 norm for building saliency dictionaries, which
is not flexible to estimate the area of visual saliency and thus
the regularization parameter needs subject-wise tuning.

In this paper, we propose a sparse coding-based gaze pre-
diction method addressing these issues based on the following
techniques. First, we use averaged features of neighborhood
frames for smoothing gaze movements as dynamic egocentric
video features. Second, we use canonical correlation analysis
(CCA) to combine different type of features (static and dy-
namic gaze features) for reducing noise in egocentric vision
and the computational complexity. Third, we use a sparse
coding-based gaze prediction framework with the l0 norm as
sparsity, which can flexibly control the area of visual saliency
in response to the content of egocentric vision.

For evaluation, we use a gaze dataset collected with eye
tracking glasses in real-world environments. The experimen-
tal results show that our proposed method improves the gaze
prediction performance in the egocentric vision compared to
the existing saliency-based methods.
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2. FRAMEWORK AND FORMULATION

To predict gaze in egocentric videos captured from real-world
noisy environments, our approach uses saliency dictionaries
built for superpixels. We build saliency dictionaries though
sparse modeling with the color histogram of the frame image
and the averaged saliency map of two neighbors frames in
videos.

2.1. Feature Extraction by CCA

Color is the most intuitive feature to distinguish different re-
gions. We use coupled RGB and Lab color spaces as color de-
scriptors that can improve the accuracy of saliency maps [5].
We generate two feature matrices for all superpixels: An av-
eraged feature matrix Fa = RC×N and a color histogram
feature matrix Fh = RC′×N , where N is the number of su-
perpixels, C is the averaged feature dimensionality, and C ′ is
the color histogram feature dimensionality.

The averaged feature Fa performs well when the scene is
composed of objects with simple color and textures but is less
robust when the foreground and background contain highly
complex textures. This is because averaging over all pixels
loses information that characterizes color variations within
each superpixel. The color histogram Fh is suitable for han-
dling scenarios where the scene contains highly textured ob-
jects.

Moreover, to combine these different types of features,
we extract common features between the feature matri-
ces Fa and Fh by canonical correlation analysis (CCA),
which finds linear projections of matrices Fa and Fh max-
imizing the correlation with each other (Fig. 1). Features
generated by CCA can reduce the computational complex-
ity since the dimensionality of Fa and Fh becomes C̃ =
min(rank(Fa), rank(Fh)), which is less than C and C ′.
CCA is formulated as the following minimization problem.

min
Pa,Ph

‖PaFa −PhFh‖2F, (1)

where Pa ∈ RC̃×C and Ph ∈ RC̃×C′
are linear projectors

from the averaged feature domain and the color histogram
domain, respectively, to the common space with the same di-
mension. The detailed derivation can be found in [6]. We es-
timate optimal projection matrices Pa and Ph by solving an
eigenvalue problem. Once the projection matrices Pa and Ph

have been learned, we can utilize these matrices for project-
ing data vectors from averaging domain and color histogram
domain into the C̃-dimensional common space where the rel-
evant pairs of information get close [7, 8].

The common space averaged features FC
a = PaFa and

the common space color histogram features FC
h = PhFh are

concatenated to be the video feature matrix F = [FC
a ,F

C
h ].

Averaging feature

Low-dimensional common space

Color histogram
feature                      

Fig. 1. Graphical model for canonical correlation analysis.

2.2. Sparse Modeling for Gaze Prediction

Our proposed sparse coding based gaze prediction framework
calculates saliency from the feature matrix by monitoring the
reconstruction errors from a saliency dictionary. We stand on
existing studies that show non-saliency regions can be repre-
sented by a sparsely coded dictionary [4, 9]. We use the error
measure to refine the foreground superpixels and to identify
foreground saliency ones.

Saliency detection based on sparse coding [9] identifies
salient regions as those having high reconstruction errors with
background templates dictionary. The dictionary D ∈ RC̃×K

comprisesK bases (or atoms) representing feature vectors for
background superpixels. The sparse reconstruction error for
superpixel r ∈ {1, . . . , N} is defined to be

ε∗r = ‖fr −Dh∗r‖22, (2)
where sparse coefficients h∗r ∈ RK are found by

h∗r = argmin
h
‖fr −Dh‖22 + λ‖h‖1. (3)

Here, λ > 0 is a regularization parameter. Thanks to the
sparsity induced from the l1 norm, the sparse reconstruction
errors are robust to complicated background [9].

We propose the l0 norm to be a better sparsity measure for
detecting saliency, and define our sparse reconstruction error
to be

ε?r = ‖fr −Dh?
r‖22, (4)

h?
r = argmin

h
‖fr −Dh‖22 s.t. ‖h‖0 ≤ l. (5)

The l1 norm optimization problem [10] has been developed
as a relaxation of the original l0 problem, and it is known that
l1 solutions are not as sparse as l0 solutions thus they may
not induce adequate sparsity when applied to certain applica-
tions [11, 12]. Although the l0 norm optimization problem is
generally NP-hard [13], there are practical methods to obtain
approximate solutions such as matching pursuit (MP) [14] or
orthogonal matching pursuit (OMP) [15]. In this paper, we
employ OMP to solve the sparse coding problem.

The sparsity parameter l in (5) has an intuitive interpreta-
tion as the number of atoms and can be adjusted to measure
the area of gaze prediction. Once we fix the l parameter, we
will have consistent results for different videos. In contrast,
the l1 norm does not count the number of atoms and the l1
solutions are subject to atom count variability over different
videos even with a fixed parameter λ.
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Fig. 2. The AUC scores of GPSC with different values of the
l0 sparsity.

Then we compute the saliency value Sal(r) for superpixel
r from the reconstruction error as follows.

Sal(r) = Sal+(r) · Sal∗(ε?r), (6)
where Sal+(r) is the object-bias center prior defined in [16]
and Sal∗(ε?r) = exp(−ε?r) depends on the dictionary type [4].
We average the saliency values from two temporally adjacent
frames to obtain final gaze predictions.

The saliency dictionary D is constructed by starting from
an initial dictionary and repeatedly refining it [4]. The initial
dictionary is a set of feature vectors from superpixels in non-
salient regions. Non-salient regions are defined to be those
whose boundary connectivity scores are non-zero. The con-
nectivity score for superpixel r measures how r is connected
to neighbor superpixels sharing the boundary with r; the con-
nectivity score is high if the neighbors belong to other regions
(i.e. many boundaries) and low if the neighbors are from the
same region (i.e. no boundaries) [17]. In the refinement state,
the dictionary is updated to be a set of feature vectors whose
Sal values are higher than the mean value of Sal .

2.3. Gaze Prediction Algorithm

We present our proposed algorithm: Gaze prediction based on
sparse coding (GPSC) in Algorithm 1 below.

Algorithm 1 Gaze prediction based on sparse coding (GPSC)
1: Compute the averaged feature matrix Fa and the color

histogram feature matrix Fh for frame i.
2: Obtain Fc

a and Fc
h by projecting to the common CCA

space.
3: Built an initial saliency dictionary D.
4: repeat
5: Calculate the saliency values by (6).
6: Update the saliency dictionary D by selecting feature

vectors whose saliency values were larger than the av-
erage: D← {fr | Sal(r) > mean(Sal(r))}.

7: until convergence
8: From Sal for all the frames, obtain gaze prediction by

averaging the saliency values from two adjacent frames.
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Fig. 3. ROC curves for sessions 1–4 in video 001.
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Fig. 4. ROC curves for videos 012, 013, 014, and 016.

3. EXPERIMENTS

We use the GTEA Gaze dataset [18], which has recorded the
egocentric video together with gaze points obtained from eye-
tracking glasses, which are used as the ground truth for gaze
prediction. There are 17 egocentric videos in the dataset.
Video 001 captures a person cooking sandwiches and con-
tains 30 sessions, each of which is associated with an action
such as “take bread” or “take knife.”

We compare the results by our proposed algorithm GPSC
with three competing methods: two traditional image saliency-
based methods, ITTI [2] and GBVS [3], and a l1 sparse
modeling method WSCF [4]. We use the receiver operating
characteristic (ROC) curve and the area under curve (AUC)
to measure the consistency between a predicted gaze map and
the ground truth gaze points, which are widely used in the
saliency detection literature [19].
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Fig. 5. Gaze prediction by different methods, from left to right: Original frame, ITTI, GBVS, WSCF, GPSC, Ground Truth.

Table 1. The AUC scores by different methods in diffident videos.
No. 002 003 005 006 007 008 010 012 013 014 016 017 018 020 021 022 Ave.
ITTI 0.606 0.418 0.099 0.466 0.664 0.425 0.276 0.426 0.250 0.690 0.592 0.555 0.581 0.350 0.680 0.513 0.474
GBVS 0.598 0.428 0.086 0.549 0.697 0.399 0.276 0.444 0.251 0.717 0.614 0.583 0.604 0.371 0.715 0.545 0.492
WSCF 0.571 0.397 0.085 0.420 0.630 0.325 0.253 0.439 0.233 0.691 0.569 0.572 0.579 0.297 0.603 0.439 0.444
GPSC 0.641 0.432 0.113 0.503 0.714 0.444 0.297 0.458 0.271 0.719 0.644 0.596 0.603 0.379 0.695 0.538 0.503

Table 2. The AUC scores by different methods in video 001.
No. Session name ITTI GBVS WSCF GPSC
1 take bread 0.733 0.722 0.662 0.737
2 take PlateBowl 0.747 0.789 0.644 0.682
3 take knife 0.773 0.791 0.737 0.845
4 take bread 0.503 0.568 0.701 0.701
5 take peanut 0.842 0.810 0.772 0.859
6 open peanut 0.630 0.678 0.830 0.781
7 scoop peanut 0.554 0.590 0.652 0.662
8 spread peanut 0.579 0.702 0.590 0.612
9 scoop peanut 0.714 0.769 0.683 0.795
10 spread peanut 0.568 0.632 0.568 0.552
11 close peanut 0.520 0.501 0.640 0.631
12 put peanut 0.621 0.729 0.686 0.715
13 take jam 0.775 0.718 0.684 0.792
14 open jam 0.866 0.855 0.771 0.894
15 spread peanut 0.661 0.752 0.594 0.778
16 scoop jam 0.891 0.906 0.765 0.898
17 scoop jam 0.882 0.893 0.766 0.906
18 close jam 0.870 0.896 0.765 0.884
19 put jam 0.735 0.666 0.550 0.560
20 spread jam 0.857 0.869 0.758 0.872
21 sandwich bread 0.622 0.546 0.551 0.661
22 take PlateBowl 0.808 0.833 0.745 0.773
23 take cereal 0.736 0.726 0.744 0.865
24 pour cereal 0.790 0.867 0.800 0.871
25 put cereal 0.671 0.698 0.714 0.674
26 take milk 0.593 0.617 0.513 0.593
27 open milk 0.855 0.864 0.805 0.833
28 pour milk 0.852 0.879 0.744 0.873
29 close milk 0.725 0.761 0.690 0.715
30 put milk 0.727 0.746 0.681 0.749

mean 0.723 0.746 0.693 0.759

3.1. Degree of sparsity

We conduct an experiment to evaluate the effects of changing
the l sparsity parameter using session 1 in video 001.

Fig. 2 shows the AUC scores for different values of l.
From Fig. 2, we can observe that l0 sparsity controls the trade-
off between precision and recall well and the AUC values are
robust when l is between 20 and 80. Therefore we use l = 50
for all the experiments.

3.2. Detection Performance

Fig. 5 shows results for frame 1 (top) and frame 2 (bottom)
in session 1 of video 001. The proposed algorithm GPSC
achieves more accurate gaze prediction than WSCF and the
gaze area by GPSC is more compact than traditional methods,
ITTI and GBVS.

Our proposed algorithm quantitatively outperformed the
other three methods. Fig. 3 shows the ROC curves of sessions
1–4 in video 001 and Fig. 4 shows the ROC curves of videos
012–016. The curves of GPSC are mostly placed to top-left to
the other methods. The AUC scores for the 30 sessions from
video 001 is shown in Table 2. Table 1 shows the AUC scores
averaged over all the sessions for each video. GPSC has the
highest performance and it has improved the sparse coding
based baseline WSCF.

4. CONCLUSION

We have proposed a novel gaze prediction method based on
sparse coding, which compared favorably to three existing
methods. Novel technical elements include CCA projection
to a common space, the use of the l0 norm as a sparsity mea-
sure, and the consideration of temporal continuity. We expect
further improvement by using multi-modal information inte-
grating audio and motion to pure video information [7, 20].
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