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ABSTRACT 

 

It is well known that frontal face is much easier to be 

recognized than pose-variant face for both human and 

machine perception. However, it is not easy to acquire a 

frontal face in real-world video surveillance.  

This paper proposes a method to synthetize a frontal 

face for recognition in video surveillance scene, which is 

based on Conditional Generative Adversarial Networks 

(cGAN) with input of multiple pose-variant faces from a 

video. Experimental results show that the proposed approach 

can generate suitable frontal faces and improve face 

recognition by around 20% on a dataset of 43276 face 

images from 19 persons, collected from the real-world video 

surveillance scene. The effectiveness of multiple frames 

against single frame as input is demonstrated. Moreover, we 

investigate the generator with different depth for 

synthetizing frontal faces, in which an up-down sampling 

trick is designed for synthetizing higher quality frontal face 

images and boosts the performance of the generator. 

 

Index Terms—synthetize face, multiple frames input, 

cGAN, video surveillance 

 

1. INTRODUCTION 

 

The face recognition problem always attracts much attention 

from academia and industries because of its wide 

applications including surveillance, identity authentication 

and so on [1]. From hand-crafted features to deep learning 

methods, the performance of face recognition has been 

greatly improved and exceeded the human’s level in some 

face recognition databases [2][3][4]. Nevertheless, it still has 

a large gap to reach human’s level performance in the real-

world scene as a result of low quality face images (blur, low 

resolution, variant poses).   

First of all, we define those video clips containing a 

person passing the surveillance camera as motion events. 

Face recognition is implemented in every motion event clip  

                                                 
* eeqhhe@scut.edu.cn; 

The work was supported by the National Nature Science 

Foundation of China (Grant No. 61571192, 61771200); 

 

instead of every single face image frame from video. 

It is unreliable that only one ill-posed face is used to 

synthetize the frontal face independently for a face 

recognition task. Fortunately, the multiple relevant face 

images in one motion event have variant poses containing 

same environmental information and sufficient facial 

features. Hence, they are reasonably used to synthetize one 

reliable frontal face for improving recognition performance. 

This paper will focus on the face recognition problem 

in real-world surveillance video scene with low-quality face 

images rather than public high-quality face databases. An 

approach is presented to synthetize frontal face for 

improving face recognition based on cGAN [5][6]. In details, 

the cGAN can synthetize aligned frontal face using 3 frames 

face images from one motion event with the same identity as 

input even though the face images have variant poses. 

The cGAN has a generator and discriminator. The 

generator consists of encoder-decoder architecture [7], and 

can synthetize frontal face images to fool the discriminator. 

The discriminator based on the deep convolutional 

generative adversarial networks (DCGAN) [8], is trained to 

evaluate whether they are real or fake face images. This 

discriminator focuses on the local patches for classification 

instead of the global [9]. The condition of this cGAN is L1 

loss between synthetic output image and target image, which 

can send the feedback to generator and make the synthetic 

face images more realistic.  

Due to input images with low resolution (40x40 pixels), 

the cGAN will cause blurry face images if we design the 

same size (40x40 pixels) of synthetic images at generator. In 

order to deal with this problem, a suitable generator of 

cGAN and one up-down sampling trick are presented to 

generate higher quality face images. Following this up-down 

sampling trick, input images and target images are 

implemented up sample to 256x256 pixels and sent to the 

cGAN. Next step, the cGAN synthetizes 256x256 pixels 

frontal face which is implemented down sample into 40x40 

pixels later for face recognition. This solution makes the 

generator synthetize higher dimensions data containing more 

features and boost the performance of generator. 

 

2. PREVIOUS WORK 
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In recent years, the performance of face recognition has been 

significantly improved as a result of deep learning. However, 

in practice, we always capture pose-variant faces with low 

resolution in video surveillance, which is still a great 

challenge for recognition. In the pose variation challenge, 

one solution is to adopt hand-crafted features [10][11], while 

another one tries to synthetize, rotate or align to obtain a 

frontal face from the original image [12][13][14]. 

The hand-crafted methods always play well in one 

specific case instead of general scenes, which have weak 

generalization ability. Recently, GAN methods are used to 

synthetize face images from random noise [15]. Particularly, 

TP-GAN is presented to utilize one single variant pose face 

image to synthetize frontal view face [16]. But the 

recognition performance of the variant pose face with large 

deflection angle (more than a 75) cannot satisfy practical 

applications. Most of these methods based on the face image 

datasets with high resolution (more than 100x100 pixels) 

instead of real-world scenes datasets, which are inconsistent 

with practical situation either. 

 

3. APPROACH 

 

3.1. Objective 

 

In real-world video surveillance scenes, face recognition is 

always implemented in one motion event as a basic unit. 

Obviously, a series of face images with variant poses can be 

easily captured, and these pose-variant face images have 

effective and sufficient information to synthetize a 

semantically frontal face. This can be considered as fusing 

features from variant pose face images. Hence, the cGAN in 

this paper is adopted to synthetize frontal face with multiple 

variant pose face images from one motion event. 

Generally, GAN model cannot generate precise and 

reliable output only depending on input images. In contrast, 

GANs with some condition settings could generate a 

reasonable result [17]. In this paper, the cGAN uses L1 loss 

between target images and synthetic output face images as 

the condition setting. The objective functions of the cGAN 

are as follows: 

           
1

log(1 ( , ( , ))) ( , )GL E D x G x z E y G x z                (1) 

( , ) [log( ( , ))] [log(1 ( , ( , )))]DL D G E D x y E D x G x z         (2) 

1
min max ( , ) ( , )cGAN cGAN

G D
L L D G E y G x z          (3) 

The cGAN is trained on adversarial strategy. Restricted 

by these objectives, the discriminator D wants to maximize 

this objective while the generator G tries to minimize it. Due 

to the L1 loss between target face image and synthetic 

output image, this objective will make the output image 

close to the target image depending on weight lamda. The G 

is trained by formula (1) while the D is train by formula (2). 

L1 loss is adopted since it encourages less blurring than 

L2 [18]. Under the L1 loss constraint condition, the cGAN 

will be guided to generate an aligned frontal face with the 

same identity because the target face image is an aligned 

frontal face and the input images are from same identity as 

well.  

 

3.2. Up-down sampling trick for boosting cGAN and 

recognition performance 

 

Some past research works showed that low-quality face 

images would substantially drop down the performance of 

face recognition. As a result, the majority of face datasets 

have at least 100x100 pixels face images to guarantee clear 

faces with more details and features. However, in our dataset, 

whose face images extracted from real-world video 

surveillance always only have 40x40 to 60x60 pixels. 

Therefore, it doesn’t make sense to use high resolution 

(more than 100x100 pixels) face images datasets to build 

our practical model and apply it in real-world scenes. 

Thus, an up-down sampling trick is presented to boost 

the performances of both the generator and the recognition. 

Concretely, the input and target images are implemented up-

sampling (bilinear interpolation) operation from 40x40 to 

256x256 pixels. After this pre-processing, the cGAN will 

synthetize 256x256 pixels frontal face images. In the next 

step, the synthetic face images will be down-sampled to 

40x40 pixels image for face recognition. 

This solution looks ordinary but very powerful, which 

will be validated in experiment section. The generator has 

stronger potential to learn higher dimensional features and 

synthetize better face images, which is coincident with the 

original goal. 

 

3.3. Conditional Generative Adversarial Network 

 

3.3.1. Architecture of Generator 

The generator G consists of encoder and decoder, like the 

architecture of Auto-Encoder. The input of generator is three 

random frames containing gray scale face with variant pose 

in motion event and the generator can synthetize one RGB 

frontal face images. 

The generator with deeper layers can obtain stronger 

learning capability. Moreover, the deeper generator will 

generate face images in a larger size. Through changing the 

depth of generator, the generator can regulate the size of 

output face images. Therefore, the input images will be 

implemented up sampling to 256x256 pixels, and the 

generator will use deeper layers to boost its performance for 

synthesizing 256x256 pixels face images, which is the up 

sample part of the solution presented at section 3.2. The 

architecture of generator is shown at Figure 1. 

The encoder of generator has 8 basic modules and the 

number of filters of each module is 64-128-256-512-512-

512-512-512. The decoder is at reverse order. Each module 

of encoder is Conv-BatchNorm-leakyRelu form, while the 

decoder has Deconv-BatchNorm-Relu form. 

Those modules can speed up training [19]. Notice, one 
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Figure 1. The architecture of generator. 

 
Figure 3. Every column is one sample. The images at the first row 

are input variant-pose faces. The left one at the second row of 

every column is synthetic face and the right one is target image 

 

256x256x3 convolution layer will be both added at 

beginning of encoder for input image and at the end of 

decoder followed by Tanh function for generating output 

face images with 3 RGB channels as well. 

 

3.3.2. Architecture of Discriminator 

Discriminator has 5 basic modules and the number of filters 

of each module is 64-128-256-512-1. The basic module of 

discriminator is Conv-BatchNorm-leakyRelu form. The 

architecture of discriminator is shown at Figure 2. The input 

of discriminator has two kinds of image pairs. One pair is 3 

input images of generator and the target frontal face image 

with the same identity. Another pair is 3 input images of 

generator and its synthetic face image. These two pairs will 

be individually sent to the discriminator as input and get two 

scores. The sum of these two scores is regarded as the loss 

of discriminator, which is shown at formula (2). The input of 

D is pair-image instead of single target or synthetic image 

because these two pairs both have the input of G, which can 

bring more noise to avoid overfitting and let the G and D 

acquire more poses-variant information from input images. 

More specifically, the input pairs will be both 

implemented up-sampling trick to 256x256 pixels. At the 

last layer of discriminator, the discriminator will output the 

30x30x1 dimensions data where each element (its value is 

between 0 and 1) is represented the confidence of its 

receptive field. The receptive field focuses on local features 

and the average value of these 30x30x1 data is regarded as 

the score mentioned above. Such an effective patch 

discriminator was previously explored in [9][18][20][21]. 

 

4. EXPERIMENTS 

 

4.1. Motion event video clips dataset for face recognition 

from real-world surveillance scene 

 

In video surveillance, it is difficult to capture high resolution  

 Figure 2. The architecture of discriminator. 

 

 
Figure 4. The first image is loss of discriminator, the second one is 

loss of generator and the last one is loss of L1. 

 

face images. Those models trained on high resolution face 

image database cannot guarantee the generalization ability in 

real-world scenes. we collected one person entrance video 

dataset containing 3465 clips, which has 43276 face images 

extracted from 19 identities. Each video clip is one person 

entrance event lasting 8 to 10 seconds. The resolution of 

face images in these clips is 40x40 to 60x60 pixels. All 

experiments in this paper are based on this dataset. 

 

4.2. Training cGAN 

 

The input of G is 3 face images from one single person 

entrance event video clip. The one kind of input pairs of D is 

the 3 input images of G and one randomly selected target 

image, the other is the 3 input images of G and its synthetic 

face image. The target images are frontal face images, which 

are selected manually and aligned by affine transformation 

using 68 points facial landmarks [22].  

The randomicity of combining target image and input 

image can be considered as a kind of data augmentation and 

regularization methods. In addition, it adds some random 

noise into the model at the training phase through this 

method. Hence, it can reduce the variance of the cGAN to 

improve the generalization performance. 

The cGAN is trained with 50 epochs and 60 batch sizes 

based on our dataset. The weight lamda of L1 loss is 100 at 

the first 30 epochs and 150 at the last 20 epochs. The scale 

of training set and test set from our dataset is 6:4. At face 

synthesis part (test part), it takes 55.876 ms approximately to 

synthetize one frontal face image in the computer with Intel 

Core I7 6700 (3.4GHz) and GeForce GTX TITAN X. 

 

4.3. Face synthesis and face recognition 

 

From Figure 3, we can see three cases of the input images, 

synthetic output images, and target images. Besides, the loss  

of generator, discriminator and L1 are shown at Figure 4, 

which represent the learning process. 

1310



Table 1 Face recognition of different images under different settings, the resized setting means it will be resized into 40x40 pixels. 

 
Figure 5. Six synthetic frontal faces from weakened generator 

under the same setting of our approach. The synthetic images are 

blurry and it is hard to distinguish who she is, even though they 

have facial features. Actually, the identity of these images is the 

same as Figure 3. 

 

KNN (with different k-neighbors) and SVM (kernel= 

liner, C=1) are used for classification tasks as the benchmark. 

KNN with 1-neighbor is regarded as maximum Euclidean 

distance method. Uniform LBP and Resnet-Dlib-model [23] 

are respectively used as features for face recognition. In this 

part, the up-down sampling trick is applied at the cGAN. 

The input, output and target face images are both validated 

under the same settings of classification algorithms. The 

recognition results are shown at Table 1. 

First of all, the traditional uniform LBP feature get 

unacceptable recognition performance, which demonstrates 

the difficulty of this surveillance video scene. Thus, Resnet-

DLIB features is adopted to validate effect of the cGAN. 

The original selective frontal faces obtain the best 

recognition performance without any doubt. Comparing 

synthetic frontal faces with pose-variant faces, the synthetic 

frontal faces are better than pose-variant faces, regardless of 

KNNs or SVM. Impressively, the cGAN can improve 

recognition performance by about 20% in some cases. 

To demonstrate the different effect of multiple frames 

and single frame at the input layer, one single-frame cGAN 

is designed under the same architecture as the cGAN, but the 

input of this model is a single face image with variant pose. 

This single-frame cGAN is trained under the same setting as 

our cGAN. As the results shown at Table 1, the multiple- 

frame cGAN obviously acquires more features and obtains 

nearly 10% improvement of recognition comparing with the 

single-frame cGAN. As a comparison, TP-GAN using single 

face image to synthetize frontal face at Multi-PIE dataset 

with setting two got  98.68%, 98.06%, 95.38%,87.72%, 

77.43% and 64.64% rank-1 recognition rate under the 15°, 

30°, 45°, 60°, 75° and 90° cross views [16]. 

 

4.4. Up-down sampling solution and the validation of 

generator with different depth for generating different 

resolution face images 

 
Figure 6. The loss of discriminator, generator and L1 of the cGAN 

with weakened generator under the same setting of our approach. 

These losses represent that this model cannot generate good face 

images to fool the discriminator. 

 

There are 2 methods to generate 40x40 resolution face 

images. One method is the up-down sampling solution we 

presented above. Another method is to synthetize 40x40 face 

image directly by the generator with less layers. As the 

validation, we removed the last 2 layers at encoder and the 

first 2 layers at decoder to generate a 64x64 pixels image. 

The training results of this model (weakened generator) are 

shown at Figures 5 and 6. From the quality of the synthetic 

face images and its loss results, this weakened generator 

cannot successfully learn the features, since less layers 

represents a weaker learning capability. Hence, the up-down 

sampling solution and one generator with suitable depth are 

adopted to deal with this challenge. 

Furthermore, due to the original input images with low 

resolution and limited information (40x40 pixels), it doesn’t 

make sense to use 256x256 pixels synthetic image directly 

for recognition because it has extra noise with super 

resolution. Hence, down-sampling is implemented at the 

synthetic images to 40x40 pixels, which can reduce noise to 

improve 2 % recognition performance as the Table 1 shown. 

This denoising performance is another benefit of the up-

down sampling solution. 

 

5. CONCLUSION 

 

We present an approach using cGAN to synthesize frontal 

face with 3 face images randomly selected from one motion 

video with low resolution (40x40 pixels). The synthetic 

frontal face images can improve the performance of face 

recognition by about 20% on the real-world video 

surveillance dataset. Moreover, the effectiveness of multiple 

frames in video analysis is demonstrated through comparing 

with the single frame input. One up-down sampling solution 

is presented to deal with low resolution face images 

challenge, which significantly boosts the performance of 

generator and face recognition. 

Image 
LBP Resnet-DLIB 

KNN-1 KNN-3 KNN-5 SVM KNN-1 KNN-3 KNN-5 SVM 

Input Images 24.6% 26.9% 29.4% 11.2% 63.8% 67.1% 70.9% 80.0% 

Synthesis from single-frame cGAN 33.8% 36.2% 38.8% 11.3% 75.2% 78.1% 79.9% 82.2% 

Synthesis from Ours, NO Resized 27.4% 29.1% 35.4% 18.1% 85.8% 88.2% 88.7% 90.1% 

Synthesis from Ours, Resized  33.6% 36.0% 40.1% 17.8% 89.5% 89.9% 90.7% 93.2% 

Target Image 56.7% 56.5% 56.5% 10.9% 99.1% 99.0% 99.4% 98.8% 
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