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ABSTRACT

Scene recognition is one of the most important tasks in com-
puter vision. Apart from appearance, spatial layout carries the
crucial cue for discriminative representation. In this paper,
we propose spatial ensemble kernel (SEK) learning, which
enables fusion of multi-scale spatial information to achieve
compact while discriminative representation of scenes. Based
on the spatial pyramid, SEK combines the CNN features in
each level of the pyramid in an ensemble and fuse them by
kernels. By kernel approximation, we achieve Fourier feature
embedding of CNN features in each scale, which establishes
a nonlinear layer of the neural network with a cosine acti-
vation function. The parameters of the nonlinear layer can
be learned jointly in one single optimization framework by
supervised learning, which enables compact and discrimina-
tive feature representations. We show the effectiveness of the
proposed SEK on two recent scene benchmark datasets, i.e.,
MIT indoor and SUN 397. The propose SEK produces high
performance on two datasets which are competitive to state-
of-the-art algorithms.

Index Terms— Spatial Ensemble Kernel, CNNs, Fourier
Feature Embedding, Spatial Pyramid Kernel, Scene Classifi-
cation

1. INTRODUCTION

Scene classification has significant meaning for many appli-
cations as autonomous driving [1], augmented reality [2], or
geo-localizing archival imagery [3]. While a great amount
of research has been conducted on robust scene representa-
tion, scene classification still remains extremely challenging
for the varying appearance of the same place and similar look-
ing among different scene environments.

Most approaches for scene classification adopt the sim-
ilar framework as other tasks, such as representing scene
images as orderless collections, which are aggregated into
a single vector representation for the entire image such as
bag-of-visual words [4], VLAD [5] or Fisher vector [6]. In
particular, SIFT plus Fisher vector encoding has obtained
the best ingredients for PASCAL VOC challenges 2012 [7].
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Fig. 1. Whole structure of CNNs & Spatial pyramid & cosine
activation function

Due to GPU-based computation power together with large
labelled image datasets, convolutional neural networks (C-
NNs) have emerged as powerful image representations for
various category-level recognition tasks. [8] has demonstrat-
ed impressive performance on large scale object recogni-
tion. Thanks to the learned model as AlexNet, VGG and
GoogLeNet, many methods directly extract descriptors from
fully connected layer of these models and achieve sound-
able performance. Recently, Instead of fully connected layer
feature, the convolutional features together with VLAD or
Fisher vector are popular since the convolutional features are
substantially less committed to a specific dataset than the
fully connected layers. [9] combines VLAD into CNNs by
adding a generalized VLAD layer. [10] realizes Fisher vector
over conv5 and a collection of fc7 activations extracted from
local crops or patches as semantic Fisher vector embedding.
[11] extracts fc7 activations of local patches at multiple scale
levels and names it as MOP-CNN.

In fact, scene classification is different from object recog-
nition in that, iconic images of objects do not contain the rich-
ness and diversity of visual information that pictures of scenes
and environments provide. It is the big obstruction when di-
rectly applying learned model from object classification task
in scene classification.

Recently, transfer learning for scene classification is pop-
ular which can inherit the fine-tuned parameters from Ima-
geNet for object recognition. Meanwhile, they refine the pa-
rameters in several layers to adapt to special scene classifi-
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cation task. In addition, special scene-centric CNNs are es-
tablished from millions of labeled scene images according
to a standard CNN architecture in [12]. [12] shows deep
learned representation of hierarchical organization from the
dense and rich variety of natural scene image, which demon-
strates that an object-centric network (using ImageNet) and a
scene-centric network (using Places) learn different features.

Neither hand-crafted descriptor nor deep learned features
from CNNs consider about the spatial information. In scene
classification, layout of the image is significant which is re-
lated to spatial information. In this paper, we combine spa-
tial pyramid match kernel into CNNs to compensate the s-
patial information loss and propose spatial ensemble kernel
approach to fuse them. By supervised way to learn the ker-
nel parameters in a unit networks combined with CNNs, the
whole framework is with increasing discrimination and with
compensating layout information.

2. SPATIAL ENSEMBLE KERNEL LEARNING

2.1. Spatial pyramid kernel

In the last few years convolutional neural networks (CNNs)
have been the first selection to powerfully represent image
contents for various category-level recognition tasks such as
object classification [8, 13], scene recognition [14] or object
detection [15].

Compared with hand-crafted descriptors, deep learned de-
scriptors can capture the characteristic of image from human
visual understanding system. However, traditional CNNs lack
spatial information and pay close attention to holistic struc-
ture. In order to reveal spatial coherence, spatial pyramid
matching (SPM) combined with CNNs is proposed to capture
the layout information as shown in Fig. 1.

Three different granularities are adopted in SPM and the
whole image is divided into {1, 4, 16} grids separately. Each
grid is fed into CNNs, which is VGG-16 model pre-learned
by ImageNet.

In traditional spatial pyramid match kernel, the final ker-
nel matrix is composed by each grid kernel function as

κ(x1, x2) =
L∑

l=1

I∑
i=1

κ(xl
1(i), x

l
2(i)) (1)

where l means different level and i is the index of grid on each
level. κ(xl

1(i), x
l
2(i)) is the histogram intersection function or

inner product. In this paper, we combine them with Fourier
Feature Embedding in next subsection.

2.2. Fourier Feature Embedding

Kernel approaches are powerful to handle the non-linear re-
lationship embedded in the dataset by ϕ(·) to map the low
dimension feature space into a high dimensional or even
infinite-dimensional feature space. Since κ(x1, x2) =<

ϕ(x1), ϕ(x2) > in most cases, it is no need to explicitly
define the mapping function ϕ(·). Relying on the implicit
lifting provided by the kernel trick, soundable performances
for most tasks are ensured.

While with the increasing of dataset scale and considering
of the calculating complexity, it is desired explicitly mapping
the data to a low-dimensional Euclidean inner product space
using a randomized feature map as

κ(x1, x2) =< ϕ(x1), ϕ(x2) >≈ Φ(x1)
TΦ(x2) (2)

Unlike the kernels lifting ϕ(·), Φ(·) is low-dimensional.
Thus, we can simply transform the input with Φ(·), and then
apply fast linear learning methods to approximate the answer
of the corresponding nonlinear kernel machine.

Kernel approximation is to find explicit Φ(·).

Theorem 1 (Bochner [16]) A continuous function g : Rd →
C is positive definite on Rd if only if it is the Fourier transfor-
mation of a finite non-negative Borel measurement µ(ω) on
Rd, i.e.,

g(x) =

∫
Rd

e−jω⊤xdµ(ω), ∀x ∈ Rd (3)

where j denotes the imaginary unit.

Proposition 1 (Shift-invariant kernel) A kernel function κ :
Rd ×Rd → C is called shift-invariant if κ(x1, x2) = k(x1 −
x2) for positive definite function k : Rd → C.

By combining Theorem 1 and Proposition 1, we can get

κ(x1, x2) = k(x1 − x2) =

∫
Rd

ejω
T (x1−x2)dµ(ω)

=

∫
Rd

ξω(x1)ξω(x2)dµ(ω)

(4)

where ξω(x) = ejω
T x.

It can be drawn that ξω(x1)ξω(x2) is an unbiased estimate
of k(x1 − x2). Then Eq. (4) is rewritten as

κ(x1, x2) ≈ ξω(x1)ξω(x2) = Φ(x1)
TΦ(x2) (5)

where Φ(·) =
√
(2/M)(ξω1(·), · · · , ξωM

(·)).
In order to avoid the complex computing, we can use

zω,b(x) to replace ξω(x) as

zω,b(x) =
√
2 cos(ωTx+ b) (6)

and

Φ(x) =
√

(2/M)(zω1,b1(x), · · · , zωM ,bM (x)) (7)

[ω1, · · · , ωM ] can be randomly extracted as i.i.d samples
from probability distribution µ(ω) [17], or by Monte Carlo
sampling method [18]. However, [19] views the mapping
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function zω,b(x) as a neuron with a cosine activation function
where biases are as uniform distribution in [0, 2π). It built a
2-layer network that can be trained by backpropagation and
stochastic gradient descent.

Inspired by this idea, we further combine it into CNNs
and spatial pyramid kernel to solve the scene classification
problem.

2.3. Ensemble Kernel Learning

In Fig.1, we combines different grid branch in the spatial
pyramid by kernels, which is realized by a new nonlinear lay-
er in the neural network with the cosine activations. The pa-
rameters of the nonlinear layer can be learned jointly in one
single optimization framework by supervised learning, which
enables compact and discriminative feature representations.

As shown in Fig.1, by fully connected layer (fc), CNNs
are extended by two layers as fcos layer and softmax layer.
softmax layer just acts as a classifier in our scene classifica-
tion task, while fcos layer conducts combination of different
branches by kernel approximation approach. After fcos layer,
all branches are cascaded together and fed into softmax layer.
By sharing W1 matrix, the number of unknown parameters
can be reduced.

Supposing dimension of fc layer being 4096, and M
as the neuron number of one subpart in fcos layer, the
unknown parameters are only existed in W 4096×M

1 and
W

(M×N)×numclass

2 , where N =
∑L

l=1 2
l−1 and numclass is

the neuron number in softmax layer.
In our scene classification task, parameters in CNNs are

fixed as pre-trained VGG-16 model with the consideration of
training data size. However W1 and W2 are learned by a su-
pervised way, which enhances the performance to a great ex-
tent. In fact, Fig.1 is an end-to-end model and in case that
condition permitted, we can apply an unified loss function to
optimize all parameters at one step, which will improve per-
formance.

The loss function during optimization procedure is select-
ed as cross entropy function as

L =
∑

− log(
exp(WT

2 x̂+ b2)∑
exp(WT

2 x̂+ b2)
) (8)

where x̂ is the cascade of x̂l(i) over grid index i and pyramid
level l. x̂l(i) is computed as

x̂l(i) = Φ(xl(i)) =
2√
M

cos(WT
1 × xl(i)) (9)

where the bias b in Eq.(6) is set to zero.
In original spatial pyramid match approach, as shown in

Eq.(1), kernel matrix is directly combined over grid and over
level. If the κ(xl

1(i), x
l
2(i)) is the inner product, then Eq.(1)

is changed into

κ(x1, x2) =

L∑
l=1

I∑
i=1

xl
1(i)

Txl
2(i) = xT

1 x2 (10)

where x1 and x2 are directly cascaded by xl
1(i) and xl

2(i) over
i and l.

In order to dig the essence of our networks, in Fig.2, we
give another equivalent form of the right part networks in
Fig.1.

Fig. 2. Equalization structure of right part in Fig.1

Fig.2 adds an additional layer fsum with no bias (in yellow
color) which keeps the same neuron number as M . Then it is
as

y=W
T

3 (
N∑

n=1

(W
n

2 )
T x̂n)+b̄3=W

T

3 (


W

1

2

W
2

2
...

W
N

2


T

x̂+b̄2)+b̄3

=


W

1

2W 3

W
2

2W 3

...
W

N

2 W 3


T

x̂+W
T

3 b̄2+b̄3

(11)
It can be drawn that Fig.2 keeps the same form as WT

2 x̂+
b2 (right part in Fig.1). In addition, from kernel combination
aspect, the kernel matrix is as

κ(ŷ1, ŷ2) =

L∑
l=1

I∑
i=1

Φ(xl
1(i))

T
L∑

l=1

I∑
i=1

Φ(xl
2(i))

= Φ(x1)
TΦ(x2)

(12)

where Φ(·) is as Eq.(7) and is realized by fcos layer.

3. EXPERIMENTS AND ANALYSIS

We conduct extensive experiments on two widely used bench-
mark datasets for scene recognition. We have also compared
to state-of-the-art methods to show the great effectiveness of
the propose SEK for scene classification.
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Table 1. Accuracy (%) with different M on two datasets

M MIT indoor SUN 397

100 68.95 50.32
200 75.73 56.58
300 72.66 54.65

3.1. Experimental setup and datasets

After fully connected layer in Fig.1, descriptor of each grid i
on each level l is Z-score standardization along dimension as
follow.

x̃l
d(i) =

((xl
d(i))− µxl(i))

σxl(i)

(13)

where d means dimension index, and µxl(i) and σxl(i) are
mean and variance respectively.

We report results on two publicly available datasets, MIT
indoor and SUN 397. The training and test separation follows
the original setting in each dataset, and for SUN 397, the final
results are achieved by 50 training images for each category.

• MIT indoor [20]: MIT indoor focuses on indoor scene
categories. It includes five big categories as store,
home, public spaces, leisure and working place where
each one further contain many subclasses as class,
hospital et. al in working space. The whole number
of categories is 67. The images in the dataset were
collected from different sources: online image search
tools (Google and Altavista), online photo sharing sites
(Flickr) and the LabelMe dataset. The database con-
tains 15,620 images and all images have a minimum
resolution of 200 pixels in the smallest axis.

• SUN 397 [21]: SUN (Scene UNderstanding) 397
dataset contains approximate 100,000 images of 397
categories. For each scene category, images were
retrieved using WordNet terminology from various
search engines on the web [22]. Only color images of
200 × 200 pixels or larger were kept. Each image was
examined to confirm whether or not it fit a detailed,
verbal definition for its category. For similar scene
categories (e.g. abbey, church, and cathedral) explicit
rules were formed to avoid overlapping definitions.

3.2. Performance analysis on two datasets

To investigate the efficacy with different number of neuron of
fcos layer, we conduct experiments on two datasets and the
results are listed in Table 1 with different M .

It can be seen that the performance is affected by M , the
number of neuron in fcos layer. In fact, appropriate value of
M depends on the scale of dataset and the number of nodes

Table 2. Comparison on MIT indoor.

Method Accuracy (%)

DeCaF [23] 59.50
MOP-CNN [11] 68.88
fc8-FV [10] 72.86
MFA-FS [24] 81.43
SEK 75.73

Table 3. Comparison on SUN 397 dataset.

Method Accuracy (%)

Combined 12 feature types [21] 38.00
FV (SIFT) [25] 43.30
DeCaF [23] 43.76
FV (SIFT+LCS) [25] 47.20
MOP-CNN [11] 51.98
fc8-FV [10] 54.40
MFA-FS [24] 63.31
SEK 56.58

on softmax layer. In our experiments, the best performances
are as 75.73% and 56.58% on MIT indoor and SUN 397 sep-
arately, where M is 200.

3.3. Comparison to the state of the art

A comparison on MIT indoor of our proposed approach with
other leading representations derived from CNNs is shown in
Table 2. Additionally, similar comparison on SUN 397 is list-
ed in Table 3, which also includes hand-crafted representation
like SIFT plus Fisher vector [25].

From Table 2 and Table 3, it can be seen that our per-
formances on both datasets are competitive to state-of-the-art
algorithms. The main reason of the soundable performance in
scene classification lies in the layout information captured by
spatial pyramid and ensemble kernel combination, which are
both fused with trainditional CNNs.

4. CONCLUSION

In this paper we discussed the benefits of ensemble kernel
combination approach by extension CNNs of a new layer as
fcos with cosine active function. Specially, since layout infor-
mation is significant for scene classification, spatial pyramid
is applied in our whole framework. We named it as spatial
ensemble kernel learning approach, which can unite different
kind of information by kernel. Combined with CNNs, it can
further be treated as an end-to-end networks. Experiments on
MIT indoor and SUN 397 datasets proved the effectiveness of
proposed approach.

1306



5. REFERENCES

[1] Colin Mcmanus, Winston Churchill, Will Maddern, Alexan-
der D. Stewart, and Paul Newman, “Shady dealings: Robust,
long-term visual localisation using illumination invariance,” in
IEEE International Conference on Robotics and Automation,
2014, pp. 901–906.

[2] Sven Middelberg, Torsten Sattler, Ole Untzelmann, and Leif
Kobbelt, “Scalable 6-dof localization on mobile devices,” in
European Conference on Computer Vision, 2014, pp. 268–283.

[3] Mathieu Aubry, Bryan C. Russell, and Josef Sivic, Painting-to-
3D model alignment via discriminative visual elements, ACM,
2014.

[4] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman, “Object retrieval with large vocabularies
and fast spatial matching,” in Computer Vision and Pattern
Recognition, 2007. CVPR ’07. IEEE Conference on, 2007, pp.
1–8.

[5] Relja Arandjelovic and Andrew Zisserman, “All about vlad,”
in IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2013, pp. 1578–1585.

[6] F. Perronnin, Y. Liu, J. Snchez, and H. Poirier, “Large-scale
image retrieval with compressed fisher vectors,” in Computer
Vision and Pattern Recognition, 2010, pp. 3384–3391.

[7] Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christo-
pher K. I. Williams, John Winn, and Andrew Zisserman, “The
pascal visual object classes challenge: A retrospective,” In-
ternational Journal of Computer Vision, vol. 111, no. 1, pp.
98–136, 2015.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “Im-
agenet classification with deep convolutional neural networks,”
in International Conference on Neural Information Processing
Systems, 2012, pp. 1097–1105.

[9] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla,
and Josef Sivic, “Netvlad: Cnn architecture for weakly super-
vised place recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 5297–5307.

[10] Mandar Dixit, Si Chen, Dashan Gao, Nikhil Rasiwasia, and
Nuno Vasconcelos, “Scene classification with semantic fisher
vectors,” in Computer Vision and Pattern Recognition, 2015,
pp. 2974–2983.

[11] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazeb-
nik, “Multi-scale orderless pooling of deep convolutional acti-
vation features,” in European Conference on Computer Vision,
2014, pp. 392–407.

[12] Bolei Zhou, Agata Lapedriza1, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva, “Learning deep features for scene
recognition using places database,” in Advances in Neural In-
formation Processing Systems, 2014, pp. 1–9.

[13] M Oquab, L Bottou, I Laptev, and J Sivic, “Learning and trans-
ferring mid-level image representations using convolutional
neural networks,” in Computer Vision and Pattern Recogni-
tion, 2014, pp. 1717–1724.

[14] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torral-
ba, and Aude Oliva, “Learning deep features for scene recog-
nition using places database,” in International Conference on
Neural Information Processing Systems, 2014, pp. 487–495.

[15] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik, “Rich feature hierarchies for accurate object detection
and semantic segmentation,” in Computer Vision and Pattern
Recognition, 2014, pp. 1–8.

[16] Walter Rudin, Fourier analysis on groups, John Wiley & Sons,
2011.

[17] Ali Rahimi and Benjamin Recht, “Random features for large-
scale kernel machines,” in Neural Infomration Processing Sys-
tems, 2007, pp. 1177–1184.

[18] Felix X Yu, Sanjiv Kumar, Henry Rowley, and Shih Fu Chang,
“Compact nonlinear maps and circulant extensions,” Computer
Science, 2015.

[19] John Moeller, Vivek Srikumar, Sarathkrishna Swaminathan,
Suresh Venkatasubramanian, and Dustin Webb, “Continuous
kernel learning,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 2016, pp.
657–673.

[20] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” pp.
413–420, 2001.

[21] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva,
and Antonio Torralba, “Sun database: Large-scale scene recog-
nition from abbey to zoo,” in Computer Vision and Pattern
Recognition, 2010, pp. 3485–3492.

[22] Torralba A, Fergus R, and Freeman WT, 80 million tiny im-
ages: a large data set for nonparametric object and scene
recognition, vol. 33, IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 2008.

[23] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, N-
ing Zhang, Eric Tzeng, and Trevor Darrell, “Decaf: A deep
convolutional activation feature for generic visual recognition,”
vol. 50, no. 1, pp. I–647, 2013.

[24] Mandar Dixit and Nuno Vasconcelos, “Object based scene rep-
resentations using fisher scores of local subspace projections,”
in Advances in Neural Information Processing Systems, 2016.

[25] Jorge Snchez, Florent Perronnin, Thomas Mensink, and Jakob
Verbeek, “Image classification with the fisher vector: Theory
and practice,” International Journal of Computer Vision, vol.
105, no. 3, pp. 222–245, 2013.

1307


