
MANIFOLD-BASED ANALYSIS OF NATURAL STOCHASTIC TEXTURES WITH
APPLICATION IN TEXTURE SYNTHESIS

Ido Zachevsky and Yehoshua Y. Zeevi

ido@technion.ac.il, zeevi@ee.technion.ac.il
Technion - Israel Institute of Technology

Haifa 3200003, Israel

ABSTRACT
Embedding textured images in manifolds reveals latent infor-
mation regarding texture structure and allows useful analysis
of these high dimensional images in a low dimensional space.
We present a framework for analysis and synthesis of natu-
ral stochastic textures (NST) which constitute an important
subset of textures that are modelled as realizations of random
processes. The randomness of NST differentiates them from
other types of images and requires a dedicated method for
analysis and synthesis. We demonstrate several applications
of this framework. The first is synthesis of new types of NST.
The second is NST analysis, reaffirming our previous find-
ings regarding the fundamental properties of NST, and show-
ing that they emerge naturally in the latent parameter space.
Finally, we show the advantage of producing a manifold rep-
resentation with intrinsic geometry.

Index Terms— Natural stochastic textures, manifolds,
texture synthesis

1. INTRODUCTION

Natural stochastic textures (NST) are a subset of textures,
considered to be realizations of random processes, unlike the
deterministic structure of regular textures or other contents of
images [1]. In the latter case, an image can be semantically
defined via a number of latent parameters. For instance, an
image of a digit (e.g. MNIST) can be defined via its literal
figure and other properties such as its roundness, boldness,
skewness, and similar properties. Given these semantic char-
acteristics, the image is deterministic.

NST are different in that their latent parameters, such as
Gaussianity, fractal dimension and coherence [2], define only
the distribution of the texture; sampled textures with the same
latent parameters will span a range of pixel-wise realizations.
As a simple example, consider the fractional Brownian mo-
tion (fBm) [3] with H = 0.5. H is the single deterministic
latent parameter, while there are infinitely many realizations
that satisfy this parameter.

This research was supported in part by the Minerva Center and the
OMEK Consortium.

{Xi}

Ψi = f(Xi)

(N , h) r(N , h)

Ψ̃i = p(Ψ,N , h) g(Ψ̃,WN)

Analysis

Synthesis

Descriptor extraction

Manifold extraction

Descriptor reconstruction

Fig. 1: Embedding framework – A high-level overview: A
set of images {Xi} is fed into a descriptor extraction function
f . A manifold N is extracted with local geometry metric,
h. Next, either data analysis (r) or synthesis (g) can be per-
formed. Synthesis is performed by extracting the modified
descriptor Ψ̃i (using information from Ψi and the manifold
(N , h)) for image i with white noise WN to obtain the syn-
thesized image.

In this work we propose a framework for embedding NST
in a manifold, based on a graph representation with intrinsic
geometry (Fig. 1). Subsequent to presentation of the frame-
work, we highlight its possible applications. These include
a method for synthesis of new types of textures, and texture
analysis based on the intrinsic geometry of the manifold. We
also show that manually-introduced texture features arise nat-
urally from the data when analyzed using the proposed frame-
work.

1.1. Related work

Texture synthesis was successfully performed by accurately
describing relations between wavelet coefficients [4]. In this

1298978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

method, textures are decomposed using the steerable wavelet
transform and dedicated, manually derived function are used
to learn the joint constraints of adjacent wavelet scales and
orientations. Then, white noise is fed to the inverse system to
generate some type of new texture.

Inspired by this method, convolutional neural networks
(CNNs) were recently used to automatically learn these fea-
tures, by using only a small subset of hand-tailored functions
[5]. A high dimensional set of Gram matrices is found to
describe each texture. Similarly to such previous methods,
white noise is fed in our method into the learned system to
create textures of a realistic appearance.

Variational autoencoders (VAEs) are also useful in man-
ifold extraction and image synthesis [6]. However, they are
less suitable for random textures, such as NST, inasmuch
as VAE-based synthesis assumes the image is normally dis-
tributed around a mean given by a deterministic function
(usually expressed via a neural network) of its descriptor.

2. A FRAMEWORK FOR ANALYSIS AND
SYNTHESIS OF NST

The framework consists of several stages (Fig. 1). First, a
descriptor is extracted for each image. Then, the descriptor
undergoes dimensionality reduction (based on a collection of
images) by means of PCA and metric assignment. The result-
ing manifold can then be used for analysis, by inspecting its
properties, or for synthesis. In synthesis, the processed de-
scriptor is projected back into the original descriptor space,
using inverse PCA, and is implemented with a white noise
source to generate new texture using a texture synthesis algo-
rithm.

2.1. Dimensionality reduction

The first step in the proposed framework, descriptor extrac-
tion (Fig. 1), is based on [5], which uses a pre-trained VGG-
19 CNN network to extract features. This algorithm provides
the descriptor extraction function, f , and the synthesis func-
tion, g.

The CNN-based synthesis framework used for descriptor
extraction yields ∼852, 000 parameters for each 224× 224×
3 dimensional texture. In a low-dimensional representation,
this number should be limited to a very low number of pa-
rameters. The purpose of this dimensionality reduction is
twofold: first, we would like to extract the most meaningful
set of latent parameters of each texture. Second, we wish to
use the reduced dimensional space as a manifold, by means of
which new textures can be interpolated from existing points
on the manifold.

In the CNN-based texture synthesis, the texture descrip-
tors (per image) are based on filter response matrices Fi, in
which every column is a vectorized response, matching a cer-
tain filter in the ith layer. We observe that much of the tex-

ture information is encapsulated in three components: the re-
sponse mean, variance and singular values. Let Gi = FTi Fi
denote a Gram matrix for layer i. Let µi (k) and σ2

i (k), de-
fined as

µi (k) =
1

si

∑
l

Fi (l, k)

σ2
i (k) =

1

si

∑
l

[Fi (l, k)− µi (k)]
2
,

where si is the length of each filter, denote the mean and vari-
ance of each filter’s response, respectively. The singular val-
ues are obtained by means of the singular value decomposi-
tion (SVD) ofGi. We have the following connection between
the SVD of Gi and the SVD of F i:

Fi = UiSiV
T
i , F

T
i Fi = ViSiU

T
i UiSiV

T
i

Gi = ViS
2
i V

T
i ,

where Ui and Vi are orthogonal matrices, and Si is a matrix
with nonzero singular values being clustered along the main
diagonal. The Gram matrix Gi is a function of a right or-
thogonal matrix, Vi, and the singular values of Fi. We find
that Vi has a limited role in texture representation, especially
when similar textures are considered. We, therefore, extract
λi, the set of singular values on the diagonal of Si, as the third
component for texture representation. In the sequel we show
that textures can indeed be generated using this set of limited
parameters: θi ,

(
µi, σ

2
i , λi

)
, for each Gram matrix.

The dimensions of these parameters are of the order of
the number of filters for each layer, whereas the original de-
scriptor dimension was of the order of the number of filters
squared.

The final representation, Ψi (Fig. 1), is given by perform-
ing PCA on each of the parameters in θi, based on a dataset
of analyzed textures.

2.2. Synthesis of new textures by interpolation in the PCA
space

We synthesize new textures using the PCA space of compact
texture representation, expressed by the response means and
variances. These parameters correspond to the deterministic
quantities of the texture, whereas the white noise used in tex-
ture generation corresponds to random content. This method
allows us to synthesize various random textures with the same
set of deterministic parameters (expressed by θi), which is an
advantage over VAE-based synthesis.

Using the PCA as a dimensionality reduction method, we
can use existing data points, but we can also interpolate new
points on the manifold by using a few existing analyzed im-
ages. Intuitively, we treat the texture space as a smooth and
continuous manifold, on which we have access to only a small
subset of images that are samples on this manifold. Interpola-
tion of new points corresponds to sampling of new points on
the manifold.

1299

The interpolation method is as follows: the texture de-
scriptor contains a set of 16 vectors θi per image (this num-
ber is dictated by the descriptor extraction method [5]); let
Ia and Ib denote two images with corresponding parameters
{θai } and

{
θbi
}

, respectively. Let α ∈ [0, 1]
16 denote a weight

vector. The interpolated parameters are given by

µ′i = α ◦ µai + (1− α) ◦ µbi
v′i = α ◦ vai + (1− α) ◦ vbi , (1)

where µji is the mean of some filter response of image j in
the PCA space, µ′i is the new texture and v ≡ σ2 denotes
variance. The rest of the parameters are extracted from the
first image. This is shown to be reasonable due to the seman-
tic closeness of images considered for interpolation. We note
that this interpolation method is linear and does not take into
account the intrinsic geometry of the manifold; it can be fur-
ther improved as by our method for obtaining the manifold’s
intrinsic geometry, presented in the sequel.

2.3. Intrinsic geometry of the manifold

The proposed framework (Fig. 1) implements a PCA-based
manifold extraction. By using PCA it is assumed that the data
structure resides in some linear subspace. It is useful due to
the stability and invertibility properties associated with it, but
it does not necessarily reflect the intrinsic geometry of the
data.

To introduce local geometry to this manifold, we use the
so-called pushforward metric ([7]§2), h. To calculate it we
represent the data points as a weighted graph where each
weight is determined via a Gaussian kernel:

Wi,j = exp(−‖pi − pj‖2 /ε), (2)

where pi is a coordinate in the embedding space. This graph
is then used to construct the graph Laplacian. The metric,
h, is calculated for each point, thereby obtaining the local
geometry. [For more details see [7]§2, Algorithm 2.]

Equipped with h, the manifold (N , h) is isometric with
the Riemannian manifold representing the data. We can then
measure distances using intrinsic geometry which represents
better the distortions between data points, compared with Eu-
clidean distances. We exemplify this phenomenon in the se-
quel.

3. EXPERIMENTS

In all the experiments we use the KTH-TIPS2 dataset [8].
This dataset contains 11 texture classes, each containing 4
samples of the same type of material. We implement the
CNN-based texture synthesis algorithm described in [5] us-
ing the Keras framework on top of TensorFlow [9]. We use
the same network by importing the trained weights provided
online by the authors. Code as well as further demonstrations
is available online [10].

(a) Exp. 1: Itar (b) Exp. 1: Îα (c) Exp. 1: Isrc

(d) Exp. 2: Itar (e) Exp. 2: Îα (f) Exp. 2: Isrc

(g) Exp. 3: Itar (h) Exp. 3: Îα (i) Exp. 3: Isrc

Fig. 2: Synthesis of a new texture. First row: (a, b, c) depict
Itar, Îα and Isrc , respectively. Rows 2–3 depict similar im-
ages for different experiments. Observe the new textures, Îα,
which combine visual properties from Itar and Isrc to gener-
ate new type of naturally-appearing texture.

3.1. Synthesis of new textures

We synthesize new textures by mixing parameters as dis-
cussed earlier (1), by using two images as Ia = Isrc and
Ib = Itar with some predetermined mixing vector α. The
resulting images, Îα, shown in Fig. 2, indicate that using
this method one can create new textures that do not appear
identical to the originating textures, but nevertheless appear
natural. A value of α = 0.8 · 1 is used in all experiments.

3.2. Intrinsic geometry and image paths

In this set of experiments, we produce the manifold using one
class of the KTH-TIPS2 dataset (wool) to obtain a single clus-
ter. Each class contains 4 sub-classes of different samples,
which introduce intra-class variability. We build the graph
using

√
ε = 0.01 (2). No significant dependency w.r.t this pa-

rameter is observed. The intrinsic and embedding dimensions
are 3 and 6, respectively [7]. The data used for manifold ex-
traction is an aggregated mean vector for all filter responses.

To demonstrate the use of geometry, we seek the path be-
tween two arbitrary images on the manifold. In the graph-
based representation, each node has at most 3 neighbors, ob-
tained by disconnecting edges with sufficiently small weights.

1300

(a) Manifold graph

0 5 10

0.075

0.050

0.025

0.000

0.025

0.050

0.075

(b) PC0

(c)

Fig. 3: Comparison of intrinsic vs. Euclidean geometry. (a)
A graph depicting the manifold of one class of KTH-TIPS2.
A Euclidean path (dashed blue) and a geodesic path (red) are
shown between two points. (b) The first principal component
(with 63% explained variance) progression for the Euclidean
path (dashed blue) and the intrinsic path (red). (c) The sets of
images along the intrinsic path (top row) and Euclidean path
(bottom row, padded with blank images).

The graph distances are calculated using the Dijkstra algo-
rithm.

Comparing the paths (Fig. 3 depicts an excerpt of the
manifold graph), we observe that using the intrinsic geome-
try, the path proceeds within the manifold structure (Fig. 3a),
whereas in the Euclidean case the path extends itself beyond
the manifold. Inspecting the first principal component, which
accounts for 63% of the explained variance, we observe that
the manifold-intrinsic path progresses more gradually com-
pared with the Euclidean path (Fig. 3b). Finally, we observe
that the images in each path (Fig. 3c; top row depicts the
intrinsic path and the bottom row depicts the Euclidean path)
vary more gradually in terms of texture content in the intrinsic
case.

3.3. Interpretation of learned parameters

We briefly recite main NST properties relevant to our applica-
tion. These are discussed in more detail elsewhere [3, 11, 12].

The 3 main properties (or features) of NST are Gaussian-
ity, self-similarity and coherence. These properties, expressed
by means of the kurtosis, the slope of the variance of the sig-
nal increments, and the mean of the log-coherence [12], are
simple to calculate, and have been used in various applica-
tions for analysis and/or processing (e.g. [3, 13, 12]). We
have previously used these features in various applications
[14, 2, 15, 11].

In our experiment (Fig. 4), we plot the transformed data
using the first 3 principal components, with color gradients

PC1

-6e-04
-4e-04

-2e-04
0e+00

2e-04
4e-04

6e-04

PC2

-5e-04
-4e-04

-3e-04
-2e-04

-1e-04
0e+00

1e-04
2e-04

3e-04
4e-04

PC3

-6e-04

-4e-04

-2e-04

0e+00

2e-04

4e-04

6e-04

H

Kurt

MeanCoh

(a) Layer 0: Hurst

PC1

-6e-04
-4e-04

-2e-04
0e+00

2e-04
4e-04

6e-04

PC2

-3e-04
-2e-04

-1e-04
0e+00

1e-04
2e-04

3e-04

PC3

-1e-04

-5e-05

0e+00

5e-05

1e-04

2e-04

(b) Layer 0: Kurtosis

PC1

-6e-04
-4e-04

-2e-04
0e+00

2e-04
4e-04

6e-04

PC2

-3e-04
-2e-04

-1e-04
0e+00

1e-04
2e-04

3e-04

PC3

-1e-04

-5e-05

0e+00

5e-05

1e-04

2e-04

(c) Layer 0: Mean coh.

PC1

-3e-03
-2e-03

-1e-03
0e+00

1e-03
2e-03

3e-03

PC2

-1e-03

-5e-04

0e+00

5e-04
1e-03

2e-03
2e-03

PC3

-1e-03

-5e-04

0e+00

5e-04

1e-03

2e-03

(d) Layer 1: Mean coh.

Fig. 4: Analysis of texture latent feature space. (a), (b), (c)
and (d) depict the data points colored according to H , Kurto-
sis, and mean coherence for layers 0 and 1, respectively. (a)
depicts also the linear trend of the first 3 features.

matching one of the NST features. We use the mean vector,
µ, for this analysis. If these features are indeed highlighted
already in this low dimensional space, we expect to find some
structure. Otherwise, the distribution should appear to be ran-
dom.

Inspecting the smooth gradients, we observe (Fig. 4) that
the features correlate with a linear combination of the first 3
principal components. The regression plots (e.g. Fig. 4a)
show that the three features span the 3D space. This result
shows that these 3 features are indeed fundamental to texture
analysis, as they are extracted directly from the data.

4. DISCUSSION

Synthesis of new texture is challenging. Our preliminary re-
sults indicate that one can generate new textures by incorpo-
rating latent properties that are extracted from existing tex-
tures represented in a learned parameter space. Unlike other
texture synthesis methods, we perform this task based on a
small number of meaningful parameters. While we use sim-
ple mixtures, better results may be obtained by interpolating
new points that are intrinsic to the structure of the learned pa-
rameter manifold.

The knowledge of the intrinsic geometry of a system al-
lows the definition of better distance measures. These, in turn,
can improve analysis algorithms such as clustering. In an on-
going work, we proposed an intrinsic-metric-based clustering
algorithm. Augmenting PCA with local metric information
allows the harnessing of such geometries.

1301

5. REFERENCES

[1] Wen-Chieh Lin, James Hays, Chenyu Wu, Vivek Kwa-
tra, and Yanxi Liu, “A comparison study of four texture
synthesis algorithms on regular and near-regular tex-
tures,” Tech. Rep., Carnegie Mellon University, 2004.

[2] Ido Zachevsky and Yehoshua Y Zeevi, “Statistics of
Natural Stochastic Textures and Their Application in
Image Denoising,” IEEE Trans. Image Process., vol.
25, no. 5, pp. 2130–2145, 2016.

[3] Beatrice Pesquet-Popescu and Jacques L Vehel,
“Stochastic fractal models for image processing,” IEEE
Signal Process. Mag., vol. 19, no. 5, pp. 48– 62, sep
2002.

[4] Javier Portilla and Eero P Simoncelli, “A Parametric
Texture Model Based on Joint Statistics of Complex
Wavelet Coefficients,” Int. J. Comput. Vis., vol. 40, no.
1, pp. 49–71, 2000.

[5] Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge, “Texture Synthesis Using Convolutional Neu-
ral Networks,” Neural Image Process. Syst., pp. 1–10,
2015.

[6] Diederik P Kingma and Max Welling, “Auto-Encoding
Variational Bayes,” arXiv Prepr. arXiv1312.6114, pp.
1–14, 2013.

[7] Dc Perrault-Joncas, “Learning and Manifolds: Leverag-
ing the Intrinsic Geometry,” 2013.

[8] Barbara Caputo, Eric Hayman, and P. Mallikarjuna,
“Class-specific material categorisation,” Proc. IEEE Int.
Conf. Comput. Vis., vol. II, pp. 1597–1604, 2005.

[9] Francois Chollet, “Keras,”
https://github.com/fchollet/keras, 2015.

[10] Ido Zachevsky, “NST Manifold project website:
https://idozach.github.io/manifolds/,” .

[11] Ido Zachevsky and Yehoshua Y. Zeevi, “Model-based
Color Natural Stochastic Textures Processing and Clas-
sification,” in IEEE Glob., Orlando, FL, dec 2015, pp.
1357—-1361.

[12] Joachim Weickert, Anisotropic Diffusion in Image Pro-
cessing, Teubner Stuttgart, 1998.

[13] L M Kaplan, “Extended fractal analysis for texture clas-
sification and segmentation.,” IEEE Trans. Image Pro-
cess., vol. 8, no. 11, pp. 1572–85, jan 1999.

[14] Ido Zachevsky and Yehoshua Y. Zeevi, “On the Statis-
tics of Natural Stochastic Textures and their Application
in Image Processing,” in IEEE Int. Conf. Acoust. Speech
Signal Process., Florence, Italy, may 2014, pp. 5829–
5833.

[15] Ido Zachevsky and Yehoshua Y Zeevi, “Superresolution
of self-similar textures,” CCIT Report. EE Pub, Tech.
Isr. Inst. Technol., vol. 838, no. 1795, 2013.

1302

