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ABSTRACT
Three-dimensional (3D) reconstruction of buildings is an ac-
tive research area with applications in e.g. city planning, en-
vironmental simulations, and city navigation. Automatic 3D
building reconstruction methods based on point clouds from
laser scanning or methods based on high resolution dense
photogrammetric point clouds are common in the literature.
In applications where large land areas need to be covered reg-
ularly it is not practical to use laser scanning or acquire im-
ages with high resolution and large image overlaps. In these
applications the reconstructed photogrammetric point cloud
has low resolution with less building details. We present a
method where the most common roof types are classified us-
ing a deep convolutional neutral network (CNN) pre-trained
using RGB data in this challenging type of data. In addi-
tion, a method for roof height estimation for each roof type
is presented to support automatic 3D building reconstruction
using model building shapes. Results are shown for a low
resolution dense photogrammetric point cloud generated us-
ing multi-view stereo reconstruction of standard overlapping
aerial images from nationwide data collection. The method is
intended to support automated generation of a nationwide 3D
landscape model.

Index Terms— Building reconstruction, Deep learning,
Convolutional neural network, Multi-view stereo, Aerial im-
agery

1. INTRODUCTION

The demand for three-dimensional (3D) models is growing
and automatic 3D reconstruction of buildings is an active
research topic in the research areas of computer vision, re-
mote sensing, and photogrammetry. Today, multi-view stereo
reconstruction of 3D geometry from two-dimensional (2D)
images is well studied and used in large scale applications.
Dense photogrammetric point clouds of large areas can be
generated from highly overlapping aerial images and are
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common in city modeling, see e.g. [1, 2, 3]. These point
clouds contain both height information and spectral informa-
tion which makes them attractive for reconstructing buildings
in 3D as they can be texture mapped using the spectral infor-
mation.

Previous work on 3D building reconstruction include
methods based on both relatively high resolution photogram-
metric point clouds, see e.g. [3, 4, 5] and point clouds from
laser scanning, see e.g. [6, 7, 8]. Approaches based on im-
agery from e.g. aerial images with small ground sampling
distance or laser scanning, provide point clouds with high
resolution and many resolved building details. However, in
some applications it is not practical to acquire images with
large image overlaps and small ground sampling distance or
use laser scanning. One such example is when large areas
needs to be covered regularly to keep the point cloud up to
date, e.g. when generating a 3D map for an entire country
on a regular basis. In this application the point cloud can be
generated using aerial images with smaller image overlaps
and imaged at larger distances. This gives a photogrammetric
point cloud with low resolution, which is more challenging
to use for 3D building reconstruction and 3D map generation
than high resolution photogrammetric point clouds or a point
cloud from laser scanning.

Building roof type classification is an important step in
model-driven 3D building reconstruction. In this paper we
present a method for automatic classification of the most com-
mon model building shapes, ridge roofs and flat roofs, using
deep convolutional neural networks (CNN), as this approach
to classification has shown strong results for hard problems in
other application areas. In the literature on building classifi-
cation there are some initial results using deep learning, see
e.g. [9, 10]. An overview of our network architecture is shown
in Fig. 1. The network is pre-trained using RGB images and
we apply transfer learning to our data which is a point cloud
sampled on a regular grid. We also propose a method for es-
timation of the highest roof height to enable reconstruction of
the building from 2D building polygons to 3D models using
model library roof shapes. The intended application is a large
scale overview of buildings in a 3D landscape model e.g. a 3D
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Fig. 1. Convolutional neural network for building classifica-
tion. The input is a three band image of size 32× 32× 3.
The network consists of three iterations of convolutional lay-
ers and two fully connected layers and a softmax layer fol-
lowed by a classifier.

map for an entire country. We show results using a relatively
low resolution photogrammetric point cloud, a digital surface
model, generated using multi-view stereo reconstruction from
high altitude aerial imagery with relatively small image over-
lap. This type of point cloud often has missing points on the
building roofs in areas where few images are used in the im-
age matching and it is relatively noisy. An example overview
from a small part of the point cloud that is used in the experi-
ments is shown in Fig. 2.

2. ROOF TYPE CLASSIFICATION

In our framework we classify patches of buildings into the two
most common roof types, ridge roofs and flat roofs. Ridge
roofs include different types of ridge roofs such as gable, half-
hip, hip, and mansard roofs. As only limited annotated data
for building classification is available the building roof type
classification is performed using transfer learning of a pre-
trained CNN on RGB data.

2.1. Network architecture

The network architecture is illustrated in Fig. 1. It is a CNN
where the input is a three band image of size 32× 32× 3. The
input size is well suited to the problem of building classifica-
tion since many of the buildings fit well into this size without
much interpolation. The network consists of three iterations
of convolutional layers followed by ReLU and max poolings
and two fully connected layers, where the first is followed by
ReLU, and in the end a softmax layer followed by a classi-
fier. The classifier outputs two classes, one for each roof type.
The image input use zerocenter normalization of the data. We
initialize the network using weights from a pre-trained net-
work for object classification using CIFAR10 data [11] which
is common RGB data. In our data the three spectral channels
contain near infrared (NIR), red, and green. In addition to the
spectral information it includes the height information from

Fig. 2. (Top) The spectral information in the point cloud with
near infrared, red, and green visualized as RGB. (Bottom)
The height information in the point cloud.

the point cloud. Combinations of these four input channels in
the training are evaluated in our experiments.

2.2. Input preprocessing

Our approach requires that the point cloud is on a regular grid
in the ground coordinate system. This enables analysis of the
data as an image with one or more spectral bands and cor-
responding height information in each pixel instead of a 3D
point cloud. The annotated training and test data used for
classification are mapped to fit the input layer of the network
architecture. We base the preprocessing of the data on the
2D polygon associated with each building. A patch for each
building is cropped from the point cloud using the building
polygon and the background is set to zero. The 2D building
polygon, which can cover a whole building or part of a build-
ing, outlines the projection of the building on the ground. The
building patches are also rotated to align the main axis with
the image coordinates using the lengths of the segments in
the building polygon. Depending on the building shape the
main axis can be aligned both horizontally or vertically in the
image. After rotation the building patches are resampled to
32× 32× 3 pixels to fit the input layer. Examples of train-
ing patches with the bands NIR, red, and green are shown in
Fig. 3. Before training the patches are also augmented using
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Fig. 3. Examples of training data patches for ridge roofs and
flat roofs using the spectral bands in near infrared, red, and
green as the three input layers.

rotation and flipping to create more training data using the an-
notated data. This also makes the two main directions equal
and removes any differences in the alignment after rotating
the patches.

3. BUILDING HEIGHT ESTIMATION

In addition to the roof type, the building height is also needed
to approximate each building using a model roof shape in a
3D map. The building height, defined as the highest roof ex-
cluding for example chimneys and antennas, is estimated for
each building depending on the result from the roof type clas-
sification.

3.1. Height estimation for ridge roofs

The building height for ridge roofs is estimated by identify-
ing points on the highest ridge and estimating the height from
these using the values in the point cloud. First, the height
image and an intensity image, which is the average of the
spectral information for all bands in each pixel, are smoothed
using normalized convolution [12] and the image gradients
are calculated for both images. Candidate ridge points are ex-
tracted using the two gradient images. The height gradient
should be small, below a threshold, and the image gradient
should be large, above a threshold. Ridges are assumed to be
roof parts where the surface normal point upwards and there
is some structure in the intensity image, either from differ-
ent illumination on the two surfaces around the ridge or that
the ridge appear as a line structure in the image. A certainty
measurement for each candidate point is calculated by analyz-
ing several local image profiles with center in the candidate
point. An example ridge roof and profiles though a candidate
point are shown in Fig. 4. The candidate point should be the
global maximum in the profile. Lines are fitted jointly to im-
age points around the maximum. The fit of the line should be
good in a least square error sense and there should be a slope
from the candidate point on both sides. If at least one im-
age profile fulfill these criteria the point is denoted validated
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Fig. 4. Example ridge roof. (Left) Validated candidate points
in green in the spectral data. (Right) Example of image pro-
files used to validate a ridge point in the height data.

ridge point. The height is estimated using the height values
at the positions of the validated ridge points. The final height
estimate use the 80th percentile of the height values to reject
outliers.

3.2. Height estimation for flat roofs

The building height for flat roofs is estimated using the his-
togram of all heights inside the building polygon. Large flat
roofs have histograms with only one large peak and sectioned
flat roofs have histograms with multiple peaks. If there is only
one large histogram peak where all values in a small interval
around the maximum represent a large part of the building
polygon, e.g. more than 80 percent, the building height is
calculated as the 80th percentile of these values.

The building height for flat roofs with more than one dis-
tinct roof height is found using all histogram peaks. For each
histogram peak a binary image is analyzed where all points in
a small interval around the maximum are set to foreground.
Connected foreground components in this image larger than
a threshold, e.g. 30 pixels, are identified using 8-connected
labeling. For sectioned flat roofs one height is estimated for
each of the connected components by selecting heights using
the connected component as a binary mask. All estimates use
the 80th percentile of the height values to reject outliers. The
final building height is selected as the highest estimate.

4. EVALUATION

The evaluation of the building roof type classification using
CNN and the method for building height estimation is per-
formed using a relatively low resolution photogrammetric
point cloud with nationwide coverage.

4.1. Data

The aerial images used in this work cover approximately
6.6× 3.7 km on the ground with a ground sampling distance
of about 0.25 m. The images are overlapping in both the
flight direction with 60 % and in cross direction with 25 %.
A dense photogrammetric point cloud is generated from the
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Table 1. Classification results in terms of accuracy for differ-
ent input configurations. Average over ten trained networks.

Input layers (RGB) Ridge roof Flat roof Total
Height, red, green 97.48% 90.80% 96.65%

NIR, red, green 97.37% 90.80% 96.55%
Height, height, height 96.35% 81.19% 94.45%

images using multi-view stereo with Semi-Global Matching
and fusion of depth where redundant depth estimates from
overlapping stereo models are merged [13]. Due to the image
overlap the number of available images for an area varies
from two to six. Stereo models are calculated from each im-
age pair and depths are fused. The resulting 2.5D point cloud,
which is called Digital Surface Model from Aerial Photos1,
is sampled on a regular grid of 0.5× 0.5 m. Each point that is
matched contains both spectral and height information. The
data has nationwide coverage over Sweden.

In addition to the point cloud, 2D building polygons of
the building footprint are used to crop out the relevant point
cloud area for each building or building part. Also a Digital
Terrain Model (the National elevation model) with resolution
1× 1 m is used to recover the building height over the local
terrain.

4.2. Experiments and results

The proposed classification method using CNNs has been
evaluated using buildings with manually marked roof heights
and roof types from two classes, houses with ridge roofs and
houses with flat or very low-slope roofs. The training set
contains 1200 ridge roofs and 400 flat roofs and the test set
contains 403 ridge roofs and 197 flat roofs. Multiple copies
of the flat roof data was added to the training set to remove
unwanted bias towards the ridge roof class. For evaluation of
the height estimation a smaller number of houses were also
annotated with the maximal building height not including
antennas and chimneys. In this data set there are 76 buildings
with ridge roofs and 24 buildings with flat roofs.

The network was trained using stochastic gradient descent
with momentum using the two classes. In our experiments
we have evaluated different combinations of the three spectral
bands and the height information as the three input layers.
The best result was obtained by combining height, red, and
green as the three input layers, but almost the same result was
obtained using only the spectral information from the data
using NIR, red and green, see Table 1. For reference the result
using only the height information in all three bands is also
shown.

In the evaluation of the building height estimation, the es-
timated height is compared to the marked ground truth value
using the absolute difference. The maximal height value

1In Swedish: ”Ytmodell från flygbilder”, see: www.lantmateriet.se
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Fig. 5. Error histograms for the absolute difference between
the true and estimated building height, dest and the true and
maximal building height, dmax.

inside the building polygon is also compared to the ground
truth in the same way. The mean and standard deviation of
the absolute differences are 0.106 and 0.103 for the absolute
difference between the estimated value and the ground truth
dest and 0.631 and 0.634 for the absolute difference between
the maximal value and the ground truth dmax. The error
histograms for the absolute differences are shown in Fig. 5.
This shows that the proposed method for estimating building
height using the ridge height for ridge roofs and the highest
flat area for flat roofs gives a better height estimate of the
highest roof height than the maximal height from the point
cloud. For both roof types there are often smaller protruding
structures on the main roof that gives higher maximal values
in the point cloud.

5. DISCUSSION AND CONCLUSION

We have presented a method using deep CNNs for roof type
classification and a method for roof height estimation to sup-
port 3D building reconstruction from a low resolution pho-
togrammetric point cloud generated using multi-view stereo
reconstruction of standard overlapping aerial images from na-
tionwide data collection. This type of point cloud is very chal-
lenging compared to point clouds from laser scanning or from
high resolution aerial imagery. We show using annotated data
that building roof types can be identified with 96.65% accu-
racy overall and the highest roof height excluding e.g. chim-
neys and antennas can be estimated with high accuracy for
each roof type. The estimated roof height represent the build-
ing height better than using the maximum of the point cloud
inside the building polygon directly.

In future work it is interesting to investigate possibili-
ties to divide larger building polygons in subparts automati-
cally and analyze them separately using the proposed method.
Also, depending on the availability of large training sets it is
also interesting to compare transfer learning to training using
only the spectral and height information from the same type
of data.
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