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ABSTRACT

Visual surface inspection is a challenging task due to the high-

ly inconsistent appearance of the target surfaces and the ab-

normal regions. Most of the state-of-the-art methods are high-

ly dependent on the labelled training samples, which are dif-

ficult to collect in practical industrial applications. To address

this problem, we propose a generative adversarial network

based framework for unsupervised surface inspection. The

generative adversarial network is trained to generate the fake

images analogous to the normal surface images. It implies

that a well-trained GAN indeed learns a good representation

of the normal surface images in a latent feature space. And

consequently, the discriminator of GAN can serve as a natu-

rally one-class classifier. We use the first three conventional

layer of the discriminator as the feature extractor, whose re-

sponse is sensitive to the abnormal regions. Particularly, a

multi-scale fusion strategy is adopted to fuse the responses

of the three convolution layers and thus improve the segmen-

tation performance of abnormal detection. Various experi-

mental results demonstrate the effectiveness of our proposed

method.

Index Terms— visual surface inspection, unsupervised

learning, generative adversarial networks, multi-scale fusion.

1. INTRODUCTION

Visual surface inspection, which aims to detect the abnormal

regions in the surface of the workpiece by using computer

vision techniques, draws a lot of attention due to its intense

demands in industrial applications. Visual surface inspection

is a challenging task due to severe image noises, large vari-

ation in the target surface, and strong diversity of abnormal

regions.

Traditional visual surface inspection methods usually ap-

ply texture analysis techniques to detect the abnormal regions,

such as structural-based method [1], statistical-based method

[2] and filter-based method [3]. However, the performance

of these kinds of methods drops significantly when they are

applied to the different surfaces or abnormal regions.

To overcome this problem, learning based methods [4–

6], e.g. Support vector machine (SVM), have been applied

to learn a mapping between low-level features and abnor-

mal regions. Recently, deep learning based methods have

achieved great improvement on image related tasks such as

object recognition [7–9]. Ren et al. [6] propose to use the

weights of a pretrained deep CNN as feature extractor to de-

tect the abnormal regions and achieve good performance on

several industrial datasets. However, in practical industrial

applications, it is difficult to collect a sufficient number of

labelled training samples, especially for the samples with la-

belled abnormal regions.

In this paper, we propose an unsupervised learning based

framework for visual surface inspection, in which no labelled

abnormal samples are required. Our goal is to learn a map-

ping from the normal surface images to the latent feature s-

pace, and then to apply the mapping to the unseen surface

images for abnormal inspection. To achieve this goal, we

need to overcome the following challenges. (1). Develop a

unified framework for various surfaces. Different workpieces

have various surfaces. Even for a single surface, the appear-

ances of different regions in the surface may be different. The

proposed framework should be adapted to different surfaces

inspection tasks. (2). How to extract effective features to

describe normal surface texture. Previous works usually use

hand-crafted features, which have low representation capa-

bility for surface inspection. New feature extractor specially

designed for different surfaces is needed. (3). Existing sur-

face inspection datasets are not sufficient to support and eval-

uate deep learning based research. The public dataset only

contains several hundred of samples. It is easy to make deep

neural networks over-fitting with such little samples.

Considering these challenges, we propose a generative ad-

versarial network based framework for visual unsupervised

surface inspection. In our proposed framework, the genera-

tive model (generator) learns to generate fake images analo-

gous to the normal surface images, while the discriminative

model (discriminator) learns to determine whether an image

is from the sample distribution. It implies that a well-trained

generative adversarial network indeed learns a representation

of the normal samples distribution in a latent feature space.

Therefore, we use the first three convolutional layers of the

discriminator as a feature extractor, and use it to map the

target surface images into the latent feature space. The da-
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Fig. 1. The overall architecture of our proposed method for visual surface inspection.

ta points in the latent feature space, which are not approxi-

mate to the normal samples distribution, will be classified as

abnormal. To further improve the performance of abnormal

detection, a multi-scale fusion strategy is adopted to fuse the

multi-scale feature maps into the finest scale. An adaptive

threshold segmentation method is then applied to determine

the final abnormal regions. Fig. 1 illustrates the details of our

proposed method.

Our proposed framework has the following advantages:

1) A generative adversarial network based framework for

visual surface inspection is presented. Since there is no need

of labelled abnormal samples, it is much more suitable for

practical application in industrial occasions.

2) Our GAN model learns the data distribution of the nor-

mal surfaces in the latent feature space. Therefore, the convo-

lutional layers of the discriminator can be used as an extractor

for surface specific features, which are more effective and ro-

bust than handcrafted feature extractor.

3) A multi-scale fusion strategy is adopted. It not only

reduces the possibility of missing detection, but also improves

the accuracy of the location of abnormal regions.

2. PROPOSED METHOD

2.1. DCGAN for feature representation learning

In recent years, generative adversarial networks have emerged

as a powerful generative model and have been widely stud-

ied in previous works [10–13]. Surface inspection is substan-

tially an one-class problem. A well-trained generative mod-

el indeed learns a representation of the data distribution in a

latent feature space. The data points in the latent feature s-

pace, which are not approximate to the data distribution will

be classified as fake.

DCGAN [12] is a strong candidate for unsupervised learn-

ing, thus we use it to learn a representation of the normal

samples distribution. The generator G learns a distribution pg
over normal surface data x via a mapping G(z) of samples z,

(a) (b)

Fig. 2. (a) Real images. (b) Fake images generated by GAN.

one-dimensional (1D) vectors of uniformly distributed input

noise sampled from latent space Z , to two-dimensional (2D)

images in the image space manifold χ which is populated by

normal surface samples. Fig. 2 shows real and fake samples

generated by DCGAN on Wood Defect Database (WOOD)

[14]. G and D are simultaneously optimized through the fol-

lowing two-player minimax game with value function:

min
G

max
D

V(G,D) =

E
x∼pdata(x)[log(D(x))] + E

z∼pz(z)[log(1-D(G(z)))].

(1)

G is trained to generate fake images analogous to the nor-

mal surface samples and fool D. D is simultaneously trained

to estimate the probability that a sample is from the training

normal surface data rather than G.

2.2. Generation of inspection map with GAN’s discrimi-

nator

We propose to use the weights of Neural Networks as a fea-

ture extractor to represent the texture structures of the normal

surfaces. Intuitively, the discriminator of a well-trained GAN

is a naturally one-class classifier. This leads to the idea of

training the GAN with sufficient normal surfaces and using

the weighs of discriminator as the feature extractor. A typi-

cal example is shown in Fig. 3, where the discriminator and

generator are well-trained using normal wood surface images.

Here we use information entropy [15] as a metric to represent
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the output of the second convolutional layer in the discrimina-

tor. As can be seen, the response is insensitive to the normal

regions but varies drastically across the abnormal regions. As

a result, we use the first three convolutional layers of the dis-

criminator as the desired feature extractor in this paper.

(a)

(c) (b)

Fig. 3. (a) Input image. (b) Feature maps of conv 2 in dis-

criminator. (c) Inspection map calculated by information en-

tropy.

Feature maps of the k-th convolutional layer in discrim-

inator is denoted as a matrix F . The feature vector in the

position coordinate (x, y) can be represented as following:

f(x,y) = [F (x, y, 1), F (x, y, 2)...F (x, y,mk)]
T . (2)

Here f(x,y) is the feature vector at (x, y), mk is the num-

ber of channels in the k-th convolutional layer.

Thus, the information entropy of feature vectors is ex-

pressed as following:

H(x,y) =

i∑

mk

f i
(x,y) ∗ logf

i
(x,y). (3)

Here, the H(x,y) is the calculated value of information en-

tropy and we refer to H as a coarse inspection map, which

reveals the abnormal regions of input image in Fig. 3(c).

2.3. Multi-scale fusion and abnormal segmentation

One of the challenges for surface detection based on texture

analysis methods is that textures do not have scale invariance.

Despite impressive surface detection results achieved by pre-

vious works [1,6,14], how to exploit a more effective strategy

to address the aforementioned challenge? - largely remains to

be studied. In this paper, we adopted a multi-scale heat map

fusion strategy to deal with the challenge.

The first three convolutional layers of discriminator gen-

erate perceptually multi-level features and convolutional fea-

tures in discriminator gradually change from low-level gradi-

ent feature to high-level structure feature with the increasing

network depth. From such observations, we first resize the

inspection maps produced by each convolutional layer to the

same size, then we apply a weight average method for the

fusion. The fusion process expresses as following:

R = αH1 + βH2 + γH3. (4)

Denote R as the fusion result and α, β, γ (α+β+ γ = 1)

are assigned weight values. The weight values are varied for

different kinds of surfaces. Hk (k = 1, 2, 3) is the heat map

produced by the k-th convolutional layer.
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Fig. 4. The influence of changing weight values α, β and γ.

As for the weight setting, we preform the test, in which we

change one of the weights while keep the other two weights

fixed. As shown in Fig. 4, we observe that the weight val-

ues α and β are negatively related to segmentation results,

but the weight values γ is positively related to segmentation

results. Compared with conv 1 and conv 2, conv 3 has larg-

er receptive field and captures more contextual information.

Therefore, we set a higher weight for conv 3 layer.

After obtaining the final fusion heat map, we use Otsu’s

method [16] to binarize and acquire the segmentation results.

3. EXPERIMENTAL RESULTS

In this section, we compared our method with three baseline

methods as the following: (1). Texture segmentation method

proposed in [17] (ICPR 2010); (2). Object proposals method

proposed in [18] (ICCV 2013); (3). Automated surface in-

spection method proposed in [6] (TCYB 2017).

Experimental data: Two datasets were used for training and

testing respectively: (1). Wood Defect Database (WOOD)

[14]; (2). Road Crack Database (CRACK) [19]. For the train-

ing of our GAN on each database, we extracted 50000 normal

surface patches with size of 96×96 and used these samples as

training data. To compare our method with TCYB 2017 [6],

50000 normal and 50000 abnormal surface patches from two

datasets [14] were sampled to train their CNN using the s-

trategy recommended by Ren et al. [6]. For the testing, we

used 48 abnormal surface samples from WOOD and CRACK

database, respectively. Both of the two datasets don’t con-

tain pixel-level segmentation labels, therefore we have made

pixel-level segmentation labels of testing samples manually.

Groundtruth (GT) in Fig. 5 shows the results of our manual

annotation.

Implementation details: For the training of our GAN, we set

mini-batch size to 64 and the rest parameter setting was same

as DCGAN [12]. The significance of our multi-scale fusion

strategy can be seen in Fig. 6. To get the best fusion result,

we set α = 0.2, β = 0.3 and γ = 0.5, respectively. For
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Fig. 5. The comparisons of visual surface inspection results with different methods.

better contrast, we also used Otsus method [16] to binarize

the results of three baseline methods. Our method was imple-

mented with tensorflow [20] and a TITAN Xp GPU was used

for the training and testing.

Evaluation indexes: Two evaluation indexes in [21] are

adopted to compare and analyze experimental results: (1).

Intersection over union (IoU); (2). Pixel accuracy (pixel acc).

Input image ( = 1, = 0, = 0) ( = 0, = 1, = 0) ( = 0, = 0, = 1) ( = 0.2, = 0.3, = 0.5) 

A B C D E

Fig. 6. The inspection maps generated with different weight

values.

Table. 1 shows quantitative results of the evaluation in-

dexes IoU and pixel acc of the four methods on the WOOD

and CRACK dataset. As we can see in Table. 1, our method

achieved higher IoU and pixel acc than the three baseline

methods, e.g. ICPR 2010 [17], ICCV 2013 [18] and TCY-

B 2017 [6].

Table 1. Quantitative comparisons. (IoU(%) / pixel acc(%))
ICPR 2010 [17] ICCV 2013 [18] TCYB 2017 [6] Ours

WOOD 25.02 / 41.51 33.89 / 47.80 57.16 / 70.20 63.90 / 79.85

CRACK 29.97 / 42.33 18.48 / 31.10 29.36 / 43.05 42.19 / 58.82

Fig. 5 shows the visual comparisons of different meth-

ods for surface inspection. Although TCYB 2017 [6] located

the abnormal surface regions more accurately than the other

two baseline methods. Yet, our method achieve a better locat-

ing result. More importantly, our method only needs normal

surface samples for training process. While the generic deep-

learning-based approach TCYB 2017 [6] needs both normal

and abnormal surface training samples. Lack of abnormal sur-

face training samples will prevent it from training.

As shown in Fig. 5(a) (c) (h), our method detected al-

most all of the abnormal surface regions compared with three

baseline methods. Three baseline methods appeared missed

detection of some defect regions. And our method detected

a challenging edge abnormal in Fig. 5(b). It demonstrated

our method learned a more powerful surface texture feature

extractor. It can be seen in Fig. 5(d), the abrupt transition of

image color affected detection results of ICPR 2010 [17]. Yet,

our method is more steady. In general, our method achieved

better performance in terms of accuracy and robustness than

the compared methods.

4. CONCLUSION

In this paper, we proposed a generative adversarial network

based framework for unsupervised visual surface inspection.

First of all, the normal surface samples were used to train D-

CGAN for feature representation learning. Then, we used the

first three convolutional layers of the discriminator as feature

extractor and coarse inspection maps are obtained with infor-

mation entropy processing. In order to get a better result, a

multi-scale fusion strategy is adopted to fuse these coarse in-

spection maps. Finally, the abnormal regions segmentation

results are produced with Otsu’s method [16]. Comparing

with three baseline methods, experimental results demonstrat-

ed the effectiveness and robustness of our method.
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