
BINDCTNET: A SIMPLE BINARY DCT NETWORK FOR IMAGE CLASSIFICATION

Xiangrui Xing1,2, Xian Yu1,2, Wenao Ma1,2, Yue Huang1,2, Delu Zeng3, Xinghao Ding1,2*

1. Fujian Key Labortary of Sensing and Computing for Smart City, Xiamen, China

2. School of Information Science and Engineering, Xiamen University, Xiamen, China

3. School of Mathematics, South China University of Technology, Guangzhou, China

*dxh@xmu.edu.cn

ABSTRACT

Convolution neural networks play an important role in the

image classification tasks. However, it is time consuming to

train the network and the cost of memory resources is

usually high. In this paper, a simple and effective network

named BinDCTNet is presented by using the binary discrete

cosine transform(BinDCT) to extract the feature-maps and a

hyper-parameter to reduce dimension of the extracted

feature. The proposed network has extremely low

computing complexity and there is almost no parameters

needed to be stored. Experiments are carried out on the hand

written digit dataset MNIST and the vehicle logo VLOGO

dataset. The results show that the proposed network

achieves the state-of-the-art accuracy with fast speed and

low memory cost, which makes it applicable on mobile and

embedded devices.

Index Terms—image classification, DCT, convolution

neural networks, MNIST, vehicle logo recognition１

1. INTRODUCTION

Image classification is one of the most basic topics in

machine learning and image processing. In the condition of

limited computing and storage capacity such as on mobile

and embedded devices, there is a great need for a

lightweight, low latency and accurate network [1][2]. At the

same time, using more effective methods to extract image

features, compress the model and save computing and

memory resources is also an important trend in machine

learning [2][3][4][5][6]. MobileNet [2] and SqueezeNet [3]

use new convolution methods that can reduce the parameters

and compress the model. XNOR-Net [5] binarizes the

weight to save the memory and computing cost. Deep

Compression [6] uses pruning, weight sharing, weight

quantization and Huffman coding to compress AlexNet and

 This work was supported in part by the National Natural Science

Foundation of China under Grants 61571382, 81671766, 61571005,
81671674, U1605252, 61671309 in part by the Guangdong Natural Science

Foundation under Grant 2015A030313007, in part by the Fundamental

Research Funds for the Central Universities under Grant 20720160075,
20720150169.

VGG-16 by 9 and 13 times, respectively, making it possible

to be applied on the mobile and embedded devices. The

above-mentioned networks have functions and accuracy of

deep neural networks. However, deeper layers will increase

memory and computing burden.

Shallow neural networks such as DNN [8] and LeNet-5

[9], are easier to be applied on limited computing and

storage capacity platforms compared to the above-

mentioned networks. These networks have less test time, but

the training process is very time-consuming and the

parameters cost a certain memory. PCANet [10] compared

to the networks above, extracts filter banks from the input

images directly using the PCA algorithm, which reduces a

lot of training time. It also uses binary hashing and block-

wise histograms to extract the features, so there are almost

no parameters needed to be stored at the output layer. After

that, DCTNet [11] has been proposed that uses 2D-DCT

basis as filter banks in approximation of high ranked

eigenvectors of PCA, reducing the pre-training process to

obtain the filter banks. However, both PCANet and DCTNet

use 2D-convlution to obtain the feature-maps, which

consumes considerable amount of computing resources.

Besides, the dimensions of extracted features are high,

adding a burden to the SVM classifier.

In order to save computing and memory resources,

BinDCTNet is proposed in this paper. The proposed

network uses 1D discrete cosine transform instead of 2D-

convlution to obtain the feature-maps, which significantly

saves computing resources. Furthermore, binary discrete

cosine transform (BinDCT)[12][13] is applied in this

process, so the feature-maps can be computed by fixed-point

addition operation basically. At the same time, the hyper-

parameter Ɵ is introduced to reduce the dimensions of

extracted features to 1 Ɵ⁄ of the original. The improved

network requires fewer computing and memory resources,

and can be easily applied on the mobile and embedded

devices. The proposed network is validated on the MNIST

[9] handwritten dataset and the VLOGO [14][16] vehicle

logo dataset, and compared with other shallow networks

such as PCANet [10] and DCTNet [11]. The results indicate

that the proposed network is at least three times faster than

PCANet, with even less parameters and state-of-the-art-

accuracy.

1278978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

2. PROPOSED NETWORK

The proposed network has three stages: stage one and stage

two obtain the feature-maps by using BinDCT; while the

output stage extracts the features by hashing, histograms and

uniformly sampling, after that, the uniformly sampled

features are sent to SVM classifier. The proposed network

structure was shown in Fig. 1.

Fig. 1: Proposed network structure.

2.1. Stage One

Fig. 2: Obtaining Feature-maps by 1D-DCT.

The boundary of input image is zero-padded so that the

output feature-maps have the same size as the input image.

Assuming the input images are 𝐼𝑖 , the 𝑙1 convolution kernels

are set as:

𝑊𝑘 = 𝐷𝑁(k, :), 𝑘 = 0,1 … 𝑙1 − 1; 𝑙1 < 𝑁; , (1)

where 𝐷𝑁 is N-point DCT transformation matrix [13] and

𝐷𝑁(k, :) represents its k-th row, so 𝑊𝑘 ∈ 𝑅1×N. Similarly:

𝑊𝑚
‘ = [𝐷𝑁(m, :)]′, 𝑚 = 0,1 … 𝑙1 − 1; 𝑙1 < 𝑁; (2)

where [𝐷𝑁(𝑚, :)]′ represents the transpose of the m-th row

of 𝐷𝑁, so 𝑊𝑚
‘ ∈ 𝑅𝑁×1.

The feature-maps can be obtained as follows:

𝑂𝑖
(𝑘,𝑚)

= 𝐼𝑖𝑊𝑘𝑊𝑚
‘ (3)

where  denotes 2D-convlution. Each time 𝑊𝑘 ∈ 𝑅1×N

convolving around each pixel can be seen as a row 1D-DCT

around that pixel, providing one of the DCT coefficients.

Similarly, each time 𝑊𝑚
‘ ∈ 𝑅𝑁×1 convolving around each

pixel can be seen as a column 1D-DCT around that pixel,

providing one of the DCT coefficients. Thus, the pixel in the

feature-maps 𝑂𝑖
(𝑘,𝑚)

 can be seen as k-th row and m-th

column 2D-DCT coefficients of an 𝑁 × 𝑁 block in the input

image [13][15]. In this way, the feature-maps are obtained

through 1D-DCT without 2D-convlution or 2D-DCT.

Furthermore, the DCT transformation matrix 𝐷𝑁 can be

replaced with binary DCT transformation matrix [12][13]

D𝑁
𝐵𝑖𝑛, which has only three values: 0, 1 and -1. Hence, this

process is simplified and only have fixed-point addition

operation. Which was shown in Fig. 2.

After this process, each input image can be converted to

𝑙1
2
 feature-maps. When 𝑘 = 𝑚 = 0, the extracted features

are DC coefficients. 𝑂𝑖
(0,0)

 is removed and the extracted

feature-maps are rearranged:

𝑂𝑖
𝑞

= 𝑂𝑖
(𝑘,𝑚)

, 𝑞 = 𝑘 × 𝑙1 + 𝑚 − 1 (4)

where 𝑘 = 0,1 … 𝑙1 − 1; 𝑚 = 0,1 … 𝑙1 − 1; 𝑙1 < 𝑁; and q is

from 0 to (𝑙1
2 − 2) . 𝐿1 = (𝑙1

2 − 1) feature-maps are

obtained from each input image through Stage One.

2.2 Stage Two

Stage Two is similar with Stage One. The output of Stage

One 𝑂𝑖
𝑞

 is the input of Stage Two, and almost same

procedure is repeated. Set 𝑙2 convolution kernels and obtain

the output image:

𝑂𝑖,q
(𝑘,𝑚)

= 𝑂𝑖
𝑞
𝑊𝑘𝑊𝑚

‘ (5)

where 𝑘 = 0,1 … 𝑙2 − 1; 𝑚 = 0,1 … 𝑙2 − 1; 𝑙2 < 𝑁; each

input 𝑂𝑖
𝑞

 will be converted to 𝑙2
2
 feature-maps. When 𝑘 =

𝑚 = 0, 𝑂𝑖,q
(0,0)

 is removed and the extracted feature-maps are

rearranged:

𝑂𝑖,𝑞
𝑝

= 𝑂𝑖,𝑞
(𝑘,𝑚)

, 𝑝 = 𝑘 × 𝑙2 + 𝑚 − 1 (6)

where p is from 0 to (𝑙2
2 − 2) . Each input 𝑂𝑖

𝑞
 generates

𝐿2 = (𝑙2
2 − 1) feature-maps in Stage Two.

2.3 Stage Three

After the first two stages, each input image generates 𝐿1𝐿2

feature-maps 𝑂𝑖,𝑞
𝑝

, q = 0,1, … , 𝑙1
2 − 2 ; p = 0,1, … , 𝑙2

2 − 2 .

Heaviside step transform is performed on each 𝐿1 feature-

maps, so that each pixel corresponds to 𝐿2 binary value.

These values are taken as a decimal number and the

following maps are obtained:

𝑇𝑖
𝑞

= ∑ 2𝑝−1𝐻(𝑂𝑖,𝑞
𝑝

)
𝐿2
𝑝=1 (7)

where q = 0,1, … , 𝑙1
2 − 2 ; p = 0,1, … , 𝑙2

2 − 2, 𝐻(·) means

Heaviside step function, and pixel values of 𝑇𝑖
𝑞

 are in the

range [0, 2𝐿2 − 1].
After that, each input image 𝐼𝑖 corresponds to 𝐿1 maps

𝑇𝑖
𝑞

, q = 1,2, … , 𝑙1
2 − 1. These 𝐿1 maps are divided into B

blocks, and the histogram of each block is calculated to

obtain a vector of 2𝐿2 dimensions. These vectors of B blocks

are concatenated to obtain 𝐵ℎ𝑖𝑠𝑡(𝑇𝑖
𝑞

) . Thus, each input

image 𝐼𝑖’s feature vector is:

𝑉𝑖 = [𝐵ℎ𝑖𝑠𝑡(𝑇𝑖
1), … , 𝐵ℎ𝑖𝑠𝑡(𝑇𝑖

𝐿1)] (8)

The dimensions of this vector are 𝐿1B × (2𝐿2), which are

too high. Therefore, the hyper-parameter Ɵ is introduced to

uniformly sample the features 𝑉𝑖, reducing the dimensions to

𝐿1B × (2𝐿2) Ɵ⁄ , which is 1 Ɵ⁄ of the original dimensions.

The uniformly sampled features 𝑉𝑖
Ɵ will be sent into the

linear SVM classifier to achieve image classification.

2.4 Memory and computing cost

Assuming the input image has the size of 𝑚 × 𝑛 pixels. In

order to generate the same number and the same size of

feature-maps, the filter bank numbers of PCANet [10] and

1279

DCTNet [11] are assumed to be 𝐿1 = 𝑙1
2 − 1, 𝐿2 = 𝑙2

2 − 1,

and the filter size is 𝑁 × 𝑁. 1D-DCTNet uses N-point DCT

transformation matrix 𝐷𝑁 in the first two stages.

BinDCTNet replaces 𝐷𝑁 with binary DCT transformation

matrix D𝑁
𝐵𝑖𝑛. Each element in D𝑁

𝐵𝑖𝑛 just costs 2 bit memory.

BinDCTNet-Ɵ introduce the hyper-parameter Ɵ as described

in 2.3

Filter bank memory cost

Changing 2D-filter banks to 1D can reduce the filter bank

size. Each element in D𝑁
𝐵𝑖𝑛 cost just 2 bit memory, which

costs even less memory as shown in Table 1.

Memory cost of extracted features and SVM weight

vectors

Introducing hyper-parameter Ɵ can reduce the dimensions

of the features from 𝐿1B(2𝐿2) to 𝐿1B(2𝐿2) Ɵ⁄ , which are

integer values. Assuming the images have 𝑁𝑆 classifications.

BinDCTNet- Ɵ ’s SVM weight vector has 𝑁𝑆𝐿1B(2𝐿2) Ɵ⁄

dimensions, which is less than other networks’ 𝑁𝑆𝐿1B(2𝐿2)

dimensions.

Computing cost

PCANet and DCTNet use 2D-convlution to obtain feature-

maps and 1D-DCTNet just uses 1D-DCT transform, while

the BinDCTNet just uses addition operation basically.

Besides, all the values of feature-maps are integer values in

BinDCTNet, thus the addition operation is fixed-point

operation instead of floating-point arithmetic. The

computing cost of the linear SVM classifier in the test

process is almost reduced to 1 Ɵ⁄ of the original after

introducing Ɵ. The computing cost was shown in Table 2

and Table 3.

Table 1:Filter bank memory cost
Network Filter bank size Value Type

PCANet 𝑁 × 𝑁 × (𝐿1 + 𝐿2) Double

DCTNet 𝑁 × 𝑁 × 𝑚𝑎𝑥(𝐿1，𝐿2) Double

1D-DCTNet 𝑁 × 𝑚𝑎𝑥(𝑙1，𝑙2) Double

BinDCTNet 𝑁 × 𝑚𝑎𝑥(𝑙1，𝑙2) 2 bit

Table 2: Computing cost of obtaining feature-maps from

each image
Network Multiplication

Times

Addition Times

PCANet 𝑚𝑛𝐿1(𝐿2

+ 1)𝑁2

𝑚𝑛𝐿1(𝐿2 + 1)(𝑁2 − 1)

DCTNet

1D-DCTNet 𝑁𝑚𝑛[𝐿1(𝑙2
2

+ 𝑙2) + 𝑙1]
(

𝑁 −
1

) 𝑚𝑛 [𝐿1 (
𝑙2

2

+𝑙2
) +𝑙1]

BinDCTNet

0
≈ 0.75(𝑁

− 1)𝑚𝑛 [𝐿1 (
𝑙2

2

+𝑙2
) + 𝑙1]

Table 3: Computing cost of obtaining feature-maps from

each image when N=8; 𝑳𝟏 = 𝑳𝟐 = 𝟖; 𝒍𝟏 = 𝒍𝟐 = 𝟑

Network Multiplication

Times

Addition Times

PCANet 4608mn 4536mn

DCTNet

1D-DCTNet 792mn 693mn

BinDCTNet 0 495mn

3. EXPERIMENTS

The experiments are conducted on two datasets, MNIST [9]

handwritten dataset and VLOGO [14][16] vehicle logo

dataset. MNIST is a well-known dataset, and VLOGO is a

dataset of vehicle logos from top ten popular manufacturers.

Each sample of VLOGO is resized to 32 × 32. We set 𝐿1 =
𝐿2 = 8 and 𝑙1 = 𝑙2 = 3 , N=8, so PCANet, DCTNet, 1D-

DCTNet and BinDCTNet would have the same size and

number of feature-maps.

3.1 Experiments on MNIST dataset

Total 5000 test samples are used to carry out experiments on

different network structures. It can be seen from the Table 4

and Fig. 3 that the test error rate of different networks is not

very different. From Table 5, it can be seen that the

BinDCTNet can reduce the memory cost dramatically. As

for computing complexity, the running time of 2000 training

samples and 2000 test samples is tested on Core (TM) i3-

3240 CPU with 4G memory and the results are presented in

Table 6 and Fig. 4. Although the reduction of the

computational complexity is not very obvious on CPU, the

proposed network is still at least three times faster than

PCANet. PCANet (im2col) [10] constructs a new matrix in

the convolution process to reduce some convolution time,

but it is memory consuming and have no substantial

optimization. Using 1D-DCT and Bin-DCT can also reduce

the convolution time. By introducing the hyper-parameter Ɵ,

SVM training time and test time can be reduced.

Table 4: Test error rate on MNIST dataset
Training

Size

PCANet DCTNet 1D-

DCTNet

Bin

DCTNet

BinDCT

Net-4

BinDCT

Net-16

25 35.57% 36.70% 37.04% 40.00% 37.36% 32.08%

50 18.57% 27.18% 18.33% 20.40% 22.86% 23.38%

100 11.20% 13.00% 11.80% 11.36% 10.96% 16.18%

300 6.00% 5.26% 6.08% 5.46% 6.48% 6.82%

500 3.33% 4.10% 3.78% 4.10% 4.06% 5.40%

1000 2.40% 2.58% 2.68% 2.44% 2.98% 4.04%

2000 2.30% 2.02% 2.04% 2.14% 2.52% 2.94%

5000 1.00% 1.30% 1.32% 1.40% 1.60% 2.54%

10000 0.88% 1.08% 1.24% 1.19% 1.43% 2.00%

Table 5: Memory cost of different networks on MNIST

dataset
Network Memory cost of

filter banks

Memory cost of SVM

weight vectors

Memory cost of

extracted features each

image

PCANet 8*8*16 Double 10*73728 Double 73728 Sparse Integer

DCTNet 8*8*8 Double 10*73728 Double 73728 Sparse Integer

1D-DCTNet 8*3 Double 10*73728 Double 73728 Sparse Integer

BinDCTNet-1 8*3 2 bit 10*73728 Double 73728 Sparse Integer

BinDCTNet-4 8*3 2 bit 10*18432 Double 18432 Sparse Integer

BinDCTNet-16 8*3 2 bit 10*4608 Double 4608 Sparse Integer

Table 6: Time consumption of different networks on

MNIST dataset (Training Size=2000)
Network

Structure

PCANet(
2D conv)

PCANet(i
m2col)

DCT
Net

1D-
DCTNet

Bin
DCTNet

BinDCT
Net-4

BinDCT
Net-16

Network Training Time

（sec）
30.18 25.13 25.71 16.75 15.82 10.89 10.52

Convolution time on
training(sec)

12.57 4.15 12.64 3.68 3.24 3.31 3.48

SVM Training Time

（sec）
4.46 4.78 5.01 5.08 5.12 1.25 0.38

Test time each Image

（ms）
16.29 14.24 16.55 12.29 11.79 6.67 5.32

Convolution time of each
sample(ms)

6.29 2.08 6.32 1.84 1.62 1.66 1.74

SVM Predict time of each
sample(ms)

3.65 3.92 3.76 3.81 3.86 1.06 0.21

1280

3.2 Experiments on VLOGO dataset

The accuracy of VLOGO dataset is better than MNIST

dataset for almost all networks. When the training size is

over 2000, the test error rate of all networks is almost zero

by Table 7 and Fig. 5. Memory cost and time consumption

are shown in Table 8, Table 9, and Fig 6. The proposed

network has very low computing and memory cost together

with state-of-the-art accuracy.

Table 7: Test error rate on VLOGO dataset
Training

Size

PCANet DCTNet 1D-

DCTNet

Bin

DCTNet

BinDCT

Net-8

BinDCT

Net-32

25 55.73% 51.67% 61.60% 55.73% 61.00% 55.33%

50 40.60% 33.47% 33.40% 26.00% 32.13% 38.27%

100 23.00% 16.47% 20.40% 18.67% 16.20% 27.47%

300 7.27% 5.60% 5.47% 3.47% 5.13% 7.80%

500 2.67% 1.13% 1.13% 1.80% 4.13% 4.67%

1000 0.87% 0.53% 0.53% 0.27% 0.60% 1.20%

2000 0.40% 0.07% 0.33% 0.07% 0.07% 0.33%

5000 0 0 0.07% 0.07% 0.07% 0.07%

Table 8: Time consumption of different networks on

VLOGO dataset (Training Size=2000)
Network

Structure

PCANet(
2D conv)

PCANet
(im2col)

DCT
Net

1D-
DCTNet

Bin
DCTNet

BinDCT
Net-8

BinDCT
Net-32

Network Training

Time（sec）
41.43 34.48 34.90 22.69 22.36 13.25 11.66

Convolution time

on training(sec)
13.05 3.73 12.81 3.22 2.84 2.88 2.80

SVM Training

Time（sec）
19.47 12.51 9.87 10.17 9.87 0.98 0.25

Test time each

image（ms）
22.11 19.45 22.63 17.15 16.39 6.79 5.97

Convolution time
each image(ms)

8.39 2.40 8.24 2.07 1.83 1.85 1.80

SVM Predict time

each image(ms)
2.21 2.37 2.30 2.35 2.33 0.23 0.08

Table 9: Memory cost of different networks on VLOGO

dataset
Network Memory cost of

filter banks

Memory cost of

SVM Weight

Vectors

Memory cost of

extracted features each

image
PCANet 8*8*16 Double 10*100352 Double 100352 Sparse Integer
DCTNet 8*8*8 Double 10*100352 Double 100352 Sparse Integer
1D-DCTNet 8*3 Double 10*100352 Double 100352 Sparse Integer
BinDCTNet-1 8*3 2 bit 10*100352 Double 100352 Sparse Integer
BinDCTNet-4 8*3 2 bit 10*25088 Double 25088 Sparse Integer
BinDCTNet-16 8*3 2 bit 10*6272 Double 6272 Sparse Integer

4. CONCLUTION

In this paper, a new network named BinDCTNet based on

PCANet is proposed to extract the feature-maps through

Bin-DCT, where the network parameters is compressed by

sampling the extracted features. The proposed network is

extensively tested on MNIST and VLOGO datasets. The

results have proved that the proposed network can save

substantial amount of computing and memory resources. At

the same time, the proposed network is very easy to be

applied on the mobile and embedded devices.

1281

5. REFERENCES

[1] Lane N D, Bhattacharya S, Georgiev P, et al. "An

Early Resource Characterization of Deep Learning on

Wearables, Smartphones and Internet-of-Things

Devices" International Workshop on Internet of Things

Towards Applications. ACM, 2015:7-12.

[2] Howard A G, Zhu M, Chen B, et al. "MobileNets:

Efficient Convolutional Neural Networks for Mobile

Vision Applications. " 2017.

[3] Iandola F N, Han S, Moskewicz M W, et al.

"SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size." 2016.

[4] Bruna J, Mallat S. "Invariant Scattering Convolution

Networks. " IEEE Transactions on Pattern Analysis &

Machine Intelligence, 2013, 35(8):1872-1886.

[5] Rastegari M, Ordonez V, Redmon J, et al. "XNOR-Net:

ImageNet Classification Using Binary Convolutional

Neural Networks. " 2016:525-542.

[6] Han S, Mao H, Dally W J. "Deep Compression:

Compressing Deep Neural Networks with Pruning,

Trained Quantization and Huffman Coding." Fiber,

2015, 56(4):3--7.

[7] Lane N D, Bhattacharya S, Mathur A, et al. "Squeezing

Deep Learning into Mobile and Embedded Devices."

IEEE Pervasive Computing, 2017, 16(3):82-88.

[8] Zhang J, Zheng Y, Qi D, et al. "DNN-based prediction

model for spatio-temporal data." ACM Sigspatial

International Conference on Advances in Geographic

Information Systems. ACM, 2016:92.

[9] Lecun Y, Bottou L, Bengio Y, et al. "Gradient-based

learning applied to document recognition."

Proceedings of the IEEE, 1998, 86(11):2278-2324.

[10] Chan T H, Jia K, Gao S, et al. "PCANet: A Simple

Deep Learning Baseline for Image Classification? "

IEEE Transactions on Image Processing, 2015,

24(12):5017.

[11] Ng C J, Teoh A B J. "DCTNet: A simple learning-free

approach for face recognition." Asia-Pacific Signal and

Information Processing Association Summit and

Conference. IEEE, 2015:761-768.

[12] Dang P P, Chau P M, Nguyen T Q, et al. "BinDCT and

Its Efficient VLSI Architectures for Real-Time

Embedded Applications." Journal of Imaging Science

& Technology, 2005, 49(2):124-137(14).

[13] Cintra R J, Bayer F M, Tablada C J. "Low-complexity

8-point DCT approximations based on integer

functions." Signal Processing, 2014, 99(99):201-214.

[14] Huang Y, Wu R, Sun Y, et al. "Vehicle Logo

Recognition System Based on Convolutional Neural

Networks With a Pretraining Strategy." IEEE

Transactions on Intelligent Transportation Systems,

2015, 16(4):1951-1960.

[15] Bouguezel S, Ahmad M O, Swamy M N S. "A fast 8×8

transform for image compression." International

Conference on Microelectronics. IEEE, 2010:74-77.

[16] http://smartdsp.xmu.edu.cn/VehicleLogoRecognition.h

tml

1282

