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ABSTRACT 

 

Convolution neural networks play an important role in the 

image classification tasks. However, it is time consuming to 

train the network and the cost of memory resources is 

usually high. In this paper, a simple and effective network 

named BinDCTNet is presented by using the binary discrete 

cosine transform(BinDCT) to extract the feature-maps and a 

hyper-parameter to reduce dimension of the extracted 

feature. The proposed network has extremely low 

computing complexity and there is almost no parameters 

needed to be stored. Experiments are carried out on the hand 

written digit dataset MNIST and the vehicle logo VLOGO 

dataset. The results show that the proposed network 

achieves the state-of-the-art accuracy with fast speed and 

low memory cost, which makes it applicable on mobile and 

embedded devices. 

 

Index Terms—image classification, DCT, convolution 

neural networks, MNIST, vehicle logo recognition１ 

 

1. INTRODUCTION 

 

Image classification is one of the most basic topics in 

machine learning and image processing. In the condition of 

limited computing and storage capacity such as on mobile 

and embedded devices, there is a great need for a 

lightweight, low latency and accurate network [1][2]. At the 

same time, using more effective methods to extract image 

features, compress the model and save computing and 

memory resources is also an important trend in machine 

learning [2][3][4][5][6]. MobileNet [2] and SqueezeNet [3] 

use new convolution methods that can reduce the parameters 

and compress the model. XNOR-Net [5] binarizes the 

weight to save the memory and computing cost. Deep 

Compression [6] uses pruning, weight sharing, weight 

quantization and Huffman coding to compress AlexNet and 
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VGG-16 by 9 and 13 times, respectively, making it possible 

to be applied on the mobile and embedded devices. The 

above-mentioned networks have functions and accuracy of 

deep neural networks. However, deeper layers will increase 

memory and computing burden. 

Shallow neural networks such as DNN [8] and LeNet-5 

[9], are easier to be applied on limited computing and 

storage capacity platforms compared to the above-

mentioned networks. These networks have less test time, but 

the training process is very time-consuming and the 

parameters cost a certain memory. PCANet [10] compared 

to the networks above, extracts filter banks from the input 

images directly using the PCA algorithm, which reduces a 

lot of training time. It also uses binary hashing and block-

wise histograms to extract the features, so there are almost 

no parameters needed to be stored at the output layer. After 

that, DCTNet [11] has been proposed that uses 2D-DCT 

basis as filter banks in approximation of high ranked 

eigenvectors of PCA, reducing the pre-training process to 

obtain the filter banks. However, both PCANet and DCTNet 

use 2D-convlution to obtain the feature-maps, which 

consumes considerable amount of computing resources. 

Besides, the dimensions of extracted features are high, 

adding a burden to the SVM classifier. 

In order to save computing and memory resources, 

BinDCTNet is proposed in this paper. The proposed 

network uses 1D discrete cosine transform instead of 2D-

convlution to obtain the feature-maps, which significantly 

saves computing resources. Furthermore, binary discrete 

cosine transform (BinDCT)[12][13] is applied in this 

process, so the feature-maps can be computed by fixed-point 

addition operation basically. At the same time, the hyper-

parameter Ɵ  is introduced to reduce the dimensions of 

extracted features to 1 Ɵ⁄  of the original. The improved 

network requires fewer computing and memory resources, 

and can be easily applied on the mobile and embedded 

devices. The proposed network is validated on the MNIST 

[9] handwritten dataset and the VLOGO [14][16] vehicle 

logo dataset, and compared with other shallow networks 

such as PCANet [10] and DCTNet [11]. The results indicate 

that the proposed network is at least three times faster than 

PCANet, with even less parameters and state-of-the-art-

accuracy. 
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2. PROPOSED NETWORK 

 

The proposed network has three stages: stage one and stage 

two obtain the feature-maps by using BinDCT; while the 

output stage extracts the features by hashing, histograms and 

uniformly sampling, after that, the uniformly sampled 

features are sent to SVM classifier. The proposed network 

structure was shown in Fig. 1. 

 
Fig. 1: Proposed network structure. 

2.1. Stage One 

 
Fig. 2: Obtaining Feature-maps by 1D-DCT. 

The boundary of input image is zero-padded so that the 

output feature-maps have the same size as the input image. 

Assuming the input images are 𝐼𝑖 , the 𝑙1 convolution kernels 

are set as: 

𝑊𝑘 = 𝐷𝑁(k, : ), 𝑘 = 0,1 … 𝑙1 − 1; 𝑙1 < 𝑁; ,            (1) 

where 𝐷𝑁  is N-point DCT transformation matrix [13] and 

𝐷𝑁(k, : ) represents its k-th row, so 𝑊𝑘 ∈ 𝑅1×N. Similarly: 

𝑊𝑚
‘ = [𝐷𝑁(m, : )]′, 𝑚 = 0,1 … 𝑙1 − 1; 𝑙1 < 𝑁;        (2) 

where [𝐷𝑁(𝑚, : )]′ represents the transpose of the m-th row 

of 𝐷𝑁, so 𝑊𝑚
‘ ∈ 𝑅𝑁×1. 

The feature-maps can be obtained as follows: 

𝑂𝑖
(𝑘,𝑚)

= 𝐼𝑖𝑊𝑘𝑊𝑚
‘                               (3) 

where   denotes 2D-convlution. Each time 𝑊𝑘 ∈ 𝑅1×N 

convolving around each pixel can be seen as a row 1D-DCT 

around that pixel, providing one of the DCT coefficients. 

Similarly, each time 𝑊𝑚
‘ ∈ 𝑅𝑁×1  convolving around each 

pixel can be seen as a column 1D-DCT around that pixel, 

providing one of the DCT coefficients. Thus, the pixel in the 

feature-maps 𝑂𝑖
(𝑘,𝑚)

 can be seen as k-th row and m-th 

column 2D-DCT coefficients of an 𝑁 × 𝑁 block in the input 

image [13][15]. In this way, the feature-maps are obtained 

through 1D-DCT without 2D-convlution or 2D-DCT. 

Furthermore, the DCT transformation matrix 𝐷𝑁  can be 

replaced with binary DCT transformation matrix [12][13] 

D𝑁
𝐵𝑖𝑛, which has only three values: 0, 1 and -1. Hence, this 

process is simplified and only have fixed-point addition 

operation. Which was shown in Fig. 2.  

After this process, each input image can be converted to 

𝑙1
2
 feature-maps. When 𝑘 = 𝑚 = 0, the extracted features 

are DC coefficients. 𝑂𝑖
(0,0)

 is removed and the extracted 

feature-maps are rearranged: 

𝑂𝑖
𝑞

= 𝑂𝑖
(𝑘,𝑚)

, 𝑞 = 𝑘 × 𝑙1 + 𝑚 − 1                  (4) 

where 𝑘 = 0,1 … 𝑙1 − 1; 𝑚 = 0,1 … 𝑙1 − 1; 𝑙1 < 𝑁; and q is 

from 0 to (𝑙1
2 − 2) . 𝐿1 = (𝑙1

2 − 1)  feature-maps are 

obtained from each input image through Stage One. 

 

2.2 Stage Two 

Stage Two is similar with Stage One. The output of Stage 

One 𝑂𝑖
𝑞

 is the input of Stage Two, and almost same 

procedure is repeated. Set 𝑙2 convolution kernels and obtain 

the output image: 

𝑂𝑖,q
(𝑘,𝑚)

= 𝑂𝑖
𝑞
𝑊𝑘𝑊𝑚

‘                           (5) 

where 𝑘 = 0,1 … 𝑙2 − 1; 𝑚 = 0,1 … 𝑙2 − 1; 𝑙2 < 𝑁;  each 

input 𝑂𝑖
𝑞

 will be converted to 𝑙2
2
 feature-maps. When 𝑘 =

𝑚 = 0, 𝑂𝑖,q
(0,0)

 is removed and the extracted feature-maps are 

rearranged: 

𝑂𝑖,𝑞
𝑝

= 𝑂𝑖,𝑞
(𝑘,𝑚)

, 𝑝 = 𝑘 × 𝑙2 + 𝑚 − 1                   (6) 

where p is from 0 to (𝑙2
2 − 2) . Each input 𝑂𝑖

𝑞
 generates 

𝐿2 = (𝑙2
2 − 1) feature-maps in Stage Two. 

 

2.3 Stage Three 

After the first two stages, each input image generates 𝐿1𝐿2 

feature-maps 𝑂𝑖,𝑞
𝑝

, q = 0,1, … , 𝑙1
2 − 2 ; p = 0,1, … , 𝑙2

2 − 2 . 

Heaviside step transform is performed on each 𝐿1  feature-

maps, so that each pixel corresponds to 𝐿2  binary value. 

These values are taken as a decimal number and the 

following maps are obtained: 

𝑇𝑖
𝑞

= ∑ 2𝑝−1𝐻(𝑂𝑖,𝑞
𝑝

)
𝐿2
𝑝=1                           (7) 

where q = 0,1, … , 𝑙1
2 − 2 ; p = 0,1, … , 𝑙2

2 − 2,  𝐻(·)  means 

Heaviside step function, and pixel values of 𝑇𝑖
𝑞

 are in the 

range [0, 2𝐿2 − 1]. 
After that, each input image 𝐼𝑖  corresponds to 𝐿1  maps 

𝑇𝑖
𝑞

, q = 1,2, … , 𝑙1
2 − 1. These 𝐿1  maps are divided into B 

blocks, and the histogram of each block is calculated to 

obtain a vector of 2𝐿2  dimensions. These vectors of B blocks 

are concatenated to obtain 𝐵ℎ𝑖𝑠𝑡(𝑇𝑖
𝑞

) . Thus, each input 

image 𝐼𝑖’s feature vector is: 

𝑉𝑖 = [𝐵ℎ𝑖𝑠𝑡(𝑇𝑖
1), … , 𝐵ℎ𝑖𝑠𝑡(𝑇𝑖

𝐿1)]             (8) 

The dimensions of this vector are 𝐿1B × (2𝐿2), which are 

too high. Therefore, the hyper-parameter Ɵ is introduced to 

uniformly sample the features 𝑉𝑖, reducing the dimensions to 

𝐿1B × (2𝐿2) Ɵ⁄ , which is 1 Ɵ⁄  of the original dimensions. 

The uniformly sampled features 𝑉𝑖
Ɵ  will be sent into the 

linear SVM classifier to achieve image classification. 

 

2.4 Memory and computing cost 

Assuming the input image has the size of 𝑚 × 𝑛 pixels. In 

order to generate the same number and the same size of 

feature-maps, the filter bank numbers of PCANet [10] and 
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DCTNet [11] are assumed to be 𝐿1 = 𝑙1
2 − 1, 𝐿2 = 𝑙2

2 − 1, 

and the filter size is 𝑁 × 𝑁. 1D-DCTNet uses N-point DCT 

transformation matrix 𝐷𝑁  in the first two stages. 

BinDCTNet replaces 𝐷𝑁  with binary DCT transformation 

matrix D𝑁
𝐵𝑖𝑛. Each element in D𝑁

𝐵𝑖𝑛 just costs 2 bit memory.  

BinDCTNet-Ɵ introduce the hyper-parameter Ɵ as described 

in 2.3 

Filter bank memory cost 

Changing 2D-filter banks to 1D can reduce the filter bank 

size. Each element in D𝑁
𝐵𝑖𝑛  cost just 2 bit memory, which 

costs even less memory as shown in Table 1.  

Memory cost of extracted features and SVM weight 

vectors 

Introducing hyper-parameter Ɵ  can reduce the dimensions 

of the features from 𝐿1B(2𝐿2)  to 𝐿1B(2𝐿2) Ɵ⁄ , which are 

integer values. Assuming the images have 𝑁𝑆 classifications. 

BinDCTNet- Ɵ ’s SVM weight vector has  𝑁𝑆𝐿1B(2𝐿2) Ɵ⁄  

dimensions, which is less than other networks’  𝑁𝑆𝐿1B(2𝐿2) 

dimensions. 

Computing cost 

PCANet and DCTNet use 2D-convlution to obtain feature-

maps and 1D-DCTNet just uses 1D-DCT transform, while 

the BinDCTNet just uses addition operation basically. 

Besides, all the values of feature-maps are integer values in 

BinDCTNet, thus the addition operation is fixed-point 

operation instead of floating-point arithmetic. The 

computing cost of the linear SVM classifier in the test 

process is almost reduced to 1 Ɵ⁄  of the original after 

introducing Ɵ. The computing cost was shown in Table 2 

and Table 3. 

Table 1:Filter bank memory cost 
Network Filter bank size Value Type 

PCANet 𝑁 × 𝑁 × (𝐿1 + 𝐿2) Double 

DCTNet 𝑁 × 𝑁 × 𝑚𝑎𝑥(𝐿1，𝐿2) Double 

1D-DCTNet 𝑁 × 𝑚𝑎𝑥(𝑙1，𝑙2) Double 

BinDCTNet 𝑁 × 𝑚𝑎𝑥(𝑙1，𝑙2) 2 bit 

Table 2: Computing cost of obtaining feature-maps from 

each image 
Network Multiplication 

Times 

Addition Times 

PCANet 𝑚𝑛𝐿1(𝐿2

+ 1)𝑁2 

𝑚𝑛𝐿1(𝐿2 + 1)(𝑁2 − 1) 

DCTNet 

1D-DCTNet 𝑁𝑚𝑛[𝐿1(𝑙2
2

+ 𝑙2) + 𝑙1] 
(

𝑁 −
1

) 𝑚𝑛 [𝐿1 (
𝑙2

2

+𝑙2
) +𝑙1] 

BinDCTNet  

0 
≈ 0.75(𝑁

− 1)𝑚𝑛 [𝐿1 (
𝑙2

2

+𝑙2
) + 𝑙1] 

Table 3: Computing cost of obtaining feature-maps from 

each image when N=8; 𝑳𝟏 = 𝑳𝟐 = 𝟖; 𝒍𝟏 = 𝒍𝟐 = 𝟑 

Network Multiplication 

Times 

Addition Times 

PCANet 4608mn 4536mn 

DCTNet 

1D-DCTNet 792mn 693mn 

BinDCTNet 0 495mn 

 

3. EXPERIMENTS 

 

The experiments are conducted on two datasets, MNIST [9] 

handwritten dataset and VLOGO [14][16] vehicle logo 

dataset. MNIST is a well-known dataset, and VLOGO is a 

dataset of vehicle logos from top ten popular manufacturers. 

Each sample of VLOGO is resized to 32 × 32. We set 𝐿1 =
𝐿2 = 8  and 𝑙1 = 𝑙2 = 3 , N=8, so PCANet, DCTNet, 1D-

DCTNet and BinDCTNet would have the same size and 

number of feature-maps.  

 

3.1 Experiments on MNIST dataset 

Total 5000 test samples are used to carry out experiments on 

different network structures. It can be seen from the Table 4 

and Fig. 3 that the test error rate of different networks is not 

very different. From Table 5, it can be seen that the 

BinDCTNet can reduce the memory cost dramatically. As 

for computing complexity, the running time of 2000 training 

samples and 2000 test samples is tested on Core (TM) i3-

3240 CPU with 4G memory and the results are presented in 

Table 6 and Fig. 4. Although the reduction of the 

computational complexity is not very obvious on CPU, the 

proposed network is still at least three times faster than 

PCANet. PCANet (im2col) [10] constructs a new matrix in 

the convolution process to reduce some convolution time, 

but it is memory consuming and have no substantial 

optimization. Using 1D-DCT and Bin-DCT can also reduce 

the convolution time. By introducing the hyper-parameter Ɵ, 

SVM training time and test time can be reduced. 

Table 4: Test error rate on MNIST dataset 
Training 

Size 

PCANet DCTNet 1D-

DCTNet 

Bin 

DCTNet 

BinDCT 

Net-4 

BinDCT 

Net-16 

25 35.57% 36.70% 37.04% 40.00% 37.36% 32.08% 

50 18.57% 27.18% 18.33% 20.40% 22.86% 23.38% 

100 11.20% 13.00% 11.80% 11.36% 10.96% 16.18% 

300 6.00% 5.26% 6.08% 5.46% 6.48% 6.82% 

500 3.33% 4.10% 3.78% 4.10% 4.06% 5.40% 

1000 2.40% 2.58% 2.68% 2.44% 2.98% 4.04% 

2000 2.30% 2.02% 2.04% 2.14% 2.52% 2.94% 

5000 1.00% 1.30% 1.32% 1.40% 1.60% 2.54% 

10000 0.88% 1.08% 1.24% 1.19% 1.43% 2.00% 

Table 5: Memory cost of different networks on MNIST 

dataset 
Network Memory cost of 

filter banks 

Memory cost of SVM 

weight vectors 

Memory cost of 

extracted features each 

image 

PCANet 8*8*16  Double   10*73728 Double   73728 Sparse Integer 

DCTNet 8*8*8  Double   10*73728 Double   73728 Sparse Integer 

1D-DCTNet 8*3   Double   10*73728 Double   73728 Sparse Integer 

BinDCTNet-1  8*3   2 bit 10*73728 Double   73728 Sparse Integer 

BinDCTNet-4 8*3   2 bit 10*18432 Double   18432 Sparse Integer 

BinDCTNet-16 8*3   2 bit 10*4608 Double   4608 Sparse Integer 

Table 6: Time consumption of different networks on 

MNIST dataset (Training Size=2000) 
Network 

Structure 

PCANet(
2D conv) 

PCANet(i
m2col) 

DCT 
Net 

1D-
DCTNet 

Bin 
DCTNet 

BinDCT 
Net-4 

BinDCT 
Net-16 

Network Training Time

（sec） 
30.18  25.13  25.71  16.75  15.82  10.89  10.52  

Convolution time on 
training(sec) 

12.57 4.15 12.64 3.68 3.24 3.31 3.48 

SVM Training Time

（sec） 
4.46  4.78  5.01  5.08  5.12  1.25  0.38  

Test time each Image

（ms） 
16.29  14.24  16.55  12.29  11.79  6.67  5.32  

Convolution time of each 
sample(ms) 

6.29 2.08 6.32 1.84 1.62 1.66 1.74 

SVM Predict time of each 
sample(ms) 

3.65 3.92 3.76 3.81 3.86 1.06 0.21 
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3.2 Experiments on VLOGO dataset 

The accuracy of VLOGO dataset is better than MNIST 

dataset for almost all networks. When the training size is 

over 2000, the test error rate of all networks is almost zero 

by Table 7 and Fig. 5. Memory cost and time consumption  

are shown in Table 8, Table 9, and Fig 6. The proposed 

network has very low computing and memory cost together 

with state-of-the-art accuracy. 

Table 7: Test error rate on VLOGO dataset 
Training 

Size 

PCANet DCTNet 1D- 

DCTNet 

Bin 

DCTNet 

BinDCT

Net-8 

BinDCT

Net-32 

25 55.73% 51.67% 61.60% 55.73% 61.00% 55.33% 

50 40.60% 33.47% 33.40% 26.00% 32.13% 38.27% 

100 23.00% 16.47% 20.40% 18.67% 16.20% 27.47% 

300 7.27% 5.60% 5.47% 3.47% 5.13% 7.80% 

500 2.67% 1.13% 1.13% 1.80% 4.13% 4.67% 

1000 0.87% 0.53% 0.53% 0.27% 0.60% 1.20% 

2000 0.40% 0.07% 0.33% 0.07% 0.07% 0.33% 

5000 0 0 0.07% 0.07% 0.07% 0.07% 

Table 8: Time consumption of different networks on 

VLOGO dataset (Training Size=2000)  
Network 

Structure 

PCANet(
2D conv) 

PCANet 
(im2col) 

DCT 
Net 

1D-
DCTNet 

Bin 
DCTNet 

BinDCT
Net-8 

BinDCT
Net-32 

Network Training 

Time（sec） 
41.43  34.48  34.90  22.69  22.36  13.25  11.66  

Convolution time 

on training(sec) 
13.05 3.73 12.81 3.22 2.84 2.88 2.80 

SVM Training 

Time（sec） 
19.47  12.51  9.87  10.17  9.87  0.98  0.25  

Test time each 

image（ms） 
22.11  19.45  22.63  17.15  16.39  6.79  5.97  

Convolution time 
each image(ms) 

8.39 2.40 8.24 2.07 1.83 1.85 1.80 

SVM Predict time 

each image(ms) 
2.21 2.37 2.30 2.35 2.33 0.23 0.08 

 

Table 9: Memory cost of different networks on VLOGO 

dataset 
Network Memory cost of 

filter banks 

Memory cost of 

SVM Weight 

Vectors 

Memory cost of 

extracted features each 

image 
PCANet 8*8*16  Double   10*100352 Double   100352 Sparse Integer 
DCTNet 8*8*8  Double   10*100352 Double   100352 Sparse Integer 
1D-DCTNet 8*3  Double   10*100352 Double   100352 Sparse Integer 
BinDCTNet-1  8*3  2 bit 10*100352 Double   100352 Sparse Integer 
BinDCTNet-4 8*3  2 bit 10*25088 Double   25088 Sparse Integer 
BinDCTNet-16 8*3  2 bit 10*6272 Double   6272 Sparse Integer 

 

 

4. CONCLUTION 

 

In this paper, a new network named BinDCTNet based on 

PCANet is proposed to extract the feature-maps through 

Bin-DCT, where the network parameters is compressed by 

sampling the extracted features. The proposed network is 

extensively tested on MNIST and VLOGO datasets. The 

results have proved that the proposed network can save 

substantial amount of computing and memory resources. At 

the same time, the proposed network is very easy to be 

applied on the mobile and embedded devices.
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