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ABSTRACT
Processing and fusing information among multi-modal is a
very useful technique to achieving high performance in many
computer vision problem. In order to tackle multi-modal
information more effectively, we introduce a novel frame-
work for multi-modal fusion: Cross-modal Message Passing
(CMMP). Specifically, we propose a cross-modal message
passing mechanism to fuse two-stream network for action
recognition, which composes of an appearance modal net-
work (RGB image) and a motion modal (optical flow image)
network. The objectives of individual networks in this frame-
work are two-fold: a standard classification objective and a
competing objective. The classification object ensures that
each modal network predicts the true action category while
the competing objective encourages each modal network to
outperform the other one. We quantitatively show that the
proposed CMMP fuse the traditional two-stream network
more effectively, and outperforms all existing two-stream
fusion method on UCF-101 and HMDB-51 datasets.

Index Terms— message passing, action recognition

1. INTRODUCTION

Video-based action recognition is an important problem in
computer vision which has attracted great attention from the
academic community [1, 2, 3, 4]. It has various application-
s such as video surveillance, human-computer interface, and
behavior analysis. Unlike recognition in static images, the
motion dynamics is another crucial aspect for action recogni-
tion except visual appearance.

Recently, Convolutional Networks (ConvNets) [5] have
witnessed great success in computer vision tasks such as im-
age classification [6]. Researchers have applied ConvNets to
solve the problem of video-based action recognition [7, 8, 9]
and achieved remarkable performance on public action recog-
nition datasets. Deep ConvNets have been shown to have an
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Fig. 1. The two-stream architecture for action recognition.
The spatial ConvNet and temporal ConvNet are trained sepa-
rately and fused by final classification score.

extraordinary ability to extract visual appearance feature from
raw pixel, which is main component in image classification.
In order to handle videos, many previous works represent the
motion dynamics of video with an image format such as op-
tical flow image, which can utilize deep ConvNet to extract
powerful representations. Following this idea, the two-stream
architecture [10] incorporates motion information by training
separate ConvNets for both appearance in still images and s-
tacks of optical flow images.

In order to merge these two aspects for action recogni-
tion, the two-stream architecture fuses final classification s-
core from two separate ConvNets and achieve state-of-the-art
performance in benchmark datasets of human action recog-
nition, as illustrated in Fig. 1. Nevertheless, the two-stream
architecture cannot exploit these two cues simultaneously,
which make it fail when classifying action categories that are
ambiguous in individual appearance and motion. For tack-
ling this problem, [11] develops an architecture that is able
to fuse spatial and temporal cues at several level feature ab-
straction. Several intuitive fusion methods, such as sum, max
and concatenation, have been studied in this work, but they
don’t work well due to inconsistent distribution and repre-
sentation of different modalities (i.e. RGB image and optical
flow image). In order to tackle multi-modal information more
effectively, we insert a novel message generating and passing
component for sharing information between appearance and
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motion modal, which extracts useful information from one
modal and passing it to another one. The passed message have
consistent distribution and representation with target modal
and provide complementary information to target modal. We
summarize the main contributions of this paper as follows:

• Presenting a novel cross-modal message passing mech-
anism for two-stream fusion, which alleviates the in-
consistent distribution and representation of different
modalities and outperforms most intuitive fusion meth-
ods.

• In order to generate meaningful message, an adversarial
objective is proposed to train the two-stream network,
which promotes competition among different modali-
ties and boost both modal networks simultaneously.

2. RELATED WORK

Following the great success of ConvNets for image classifica-
tion [6], semantic segmentation [12], road detection [13] and
other computer vision tasks, deep learning algorithms have
been used in video-based action recognition as well. Multi-
ple frames in each sequence are feed into ConvNets in [7], and
then pooled using single, late, early and slow fusion across the
temporal domain; However, this native method does not ob-
tain significant improvement compared those methods based
on a single frame, which indicates that motion features are
difficult to obtain by simply and directly pooling spatial fea-
tures from ConvNets.

In light of this, Karen Simonyan et al. [10] propose a two-
stream ConvNet architecture which incorporates spatial and
temporal networks, and demonstrate that optical flow is an ef-
fective way to model motion information. Since this scheme
improves the accuracy of action recognition significantly, the
two-stream architecture followed by many other researcher-
s. For example, Bowen Zhang et al. [9] accelerate the orig-
inal two-stream method by replacing optical flow with mo-
tion vector which can be obtained directly from compressed
videos without extra calculation. Recently, Limin Wang et
al. [14] introduce a temporal segment network for long-range
temporal structure modeling, which achieves the best perfor-
mance on benchmark datasets so far. In detail, a sparse tem-
poral sampling strategy is combined with video-level supervi-
sion to enable efficient and effective learning using the whole
action video. Despite the success of those methods, all of
them just simply fuse the final probability scores from two-
stream ConvNets, which does not take advantage of comple-
mentarity between appearance and motion information when
training the network.

In order to fuse the appearance and motion information
more effectively, feature-level fusion is a straightforward
method. Christoph Feichtenhofer et al. [11] propose a tem-
poral fusion layer that incorporating 3D convolutions and
pooling to fuse the feature from the two-stream network, and

demonstrate its superiority compared with several simple s-
trategies such as sum, max and concatenation. For leveraging
the relation between RGB and corresponding optical flow,
Lin Sun et al. [15] extend the traditional LSTM by learning
independent hidden state transitions of memory cells for in-
dividual spatial locations, and it is trained by both RGB and
optical flow and learned weights are shared by both modali-
ties. Moreover, convolutional 3D (C3D) [8] is another way to
exploit spatial and temporal information jointly, which learns
3D convolution kernels in both space and time based on the
straightforward extension of the established 2D CNNs. How-
ever, the performance of C3D is inferior to the two-stream
architecture method, which verifies the advantage of the two-
stream architecture in another way. Therefore, two-stream
architecture is the baseline of the proposed method, and a
novel message passing mechanism is introduced to harness
the appearance and motion information when training and
test.

3. MODELS AND ALGORITHM

3.1. Revisiting Two-stream Architecture

As illustrated in Fig. 1, given a video sequence with N
frames, the corresponding optical flow images are extracted
as a pre-processing step. For tackle appearance information,
the spatial stream ConvNet operates on a single RGB images,
and temporal stream ConvNet takes a stack of L temporal-
ly adjacent optical flow images (e.g. L=5). The output of
spatial and temporal stream ConvNet are C-dimensional vec-
tor referred as class probability score vector, where C is the
number of action category. For fusing those two ConvNets’
results, a weighted sum is applied on two output vectors, and
final classification result is determined by the max value of
the weighted sum vector.In addition, for purpose of model-
ing the temporal structure of the video, several frames and
corresponding optical flow images are sampled by heuristic s-
trategy. For presenting clearly, in the remainder of this paper,
we refer the RGB image as Appearance Modal(A-Modal) and
the optical flow image as Motion Modal (M-Modal).

3.2. Cross-modal Message Passing

As we discussed in Sec. 1, an obvious problem of the two-
stream ConvNets is their inability in incorporating the ap-
pearance and motion information. In detail, the spatial stream
ConvNet and temporal stream ConvNet are trained with A-
Modal and M-Modal respectively, which make original two-
stream architecture can not learn the pixel-wise relationship
between spatial and temporal features. For tackle this prob-
lem, a novel cross-modal message passing mechanism is pro-
posed to fusion two-stream ConvNets, which alleviates the in-
consistent distribution and representation of different modal-
ities and outperforms most intuitive fusion methods. To be
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Fig. 2. Illustration of the proposed CMMP. First, several
frames and optical flow images are sampled in a video and
feed those into CNNs; Then the extracted feature from two
CNNs is regarded as inputs of cross-modal message passing
module; Finally the novel adversarial objective is utilized to
guide the whole network to update its weight. The whole sys-
tem is end-to-end trainable.

specific, two message generator networks are embedded be-
tween two-stream ConvNets, where one receives convolution-
al feature from A-Modal and outputs messages for M-Modal
and the other one processes inversely. Both these two mes-
sage generator are two-layer Long Short Term Memory (L-
STM) network but own different weights, as illustrated in Fig.
2.

Suppose xa, xm ∈ RT×D denote the convolutional fea-
tures from A-Modal and M-Modal respectively, where T is
the number of sampled frames and D is the dimensional size
of extracted feature. Therefore, the two message generator
networks can be formatted as follows:

ma = lstm2(xa; wa); mm = lstm2(xm; wm) (1)

where lstm2 represents the two-layer LSTM and wa,wm are
their weights. Moreover, ma,mm ∈ RT×D denote the gen-
erated messages from A-modal and M-modal, and then those
messages are fused with convolutional features from another
modal as follows:

xfa = fusion(xa,mm); xfm = fusion(xm,ma) (2)

where fusion is a custom function for merging the convolu-
tional features from one modal and message from the other
modal, and a simple average strategy is adopted in this pa-
per. For obtaining the classification results, the fused features
xfa, x

f
m are then fed into a fully-connected layer, which out-

puts class probability scores of the input video. In addition,
a novel adversarial loss is proposed to ensure that the learned
message generator can transform most discriminative infor-
mation from one modal to the other one.

3.3. Adversarial Objective

With the cross-modal message passing mechanism, a fact e-
merged that a competing objective should to be added in order
to make the message generator actually learning meaningful
representations of the messages. Hence we introduce an ad-
versarial objective which promotes competition among differ-
ent modalities and boosts both modal networks simultaneous-
ly. Specifically, the adversarial objective is based on the prin-
ciple that the two-stream ConvNets compete with each other
to get lower loss. Following the original two-stream architec-
ture, the standard categorial cross-entropy loss is utilized as
loss function for each ConvNets, which is formed as

L(y, s) = −
C∑
i=1

yi(si − log

C∑
j=1

exp sj) (3)

where C is the number of action classes and yi is the
groundtruth label concerning class i. Based on this loss func-
tion, the adversarial objective function of A-Modal ConvNet
is defined as follows:

ALa = La(y, sa) + f(La(y, sa)− Lm(y, sm)) (4)

while the adversarial objective function for M-Modal Con-
vNet is:

ALm = Lm(y, sm) + f(Lm(y, sm)− La(y, sa)) (5)

where La, Lm represent the cross-entropy loss of A-Modal
and M-Modal ConvNets; f(x) = max(x, 0) so that the op-
timization objective for A-Modal ConvNet pushes it to get
lower loss and vice versa for M-Modal ConvNet.

3.4. Training Details

Two-Stage Training: The training frameworks for the pro-
posed cross-modal message passing network comprises of t-
wo stages. First, two-stream ConvNets is pretrained using
standard categorial cross-entropy loss without updating the
cross-modal message passing network, and then the proposed
adversarial objective loss function is utilized to train the w-
hole network jointly. In pretraining stage, the ConvNet is
trained to predict action category only using one modal da-
ta. In this way, each ConvNet learns to extract the most rel-
evant feature from each modal for action classification. In
other words, the spatial-stream ConvNet will capture the ap-
pearance characteristics about action, such as skis in skiing,
soccer ball in playing football. Meanwhile, the spatial-stream
ConvNet will exploit the motion characteristics about action,
for example, difference between walking and running, yawn-
ing and laughing, or swimming, crawl and breast-stroke.

Due to inconsistent distribution between A-Modal and M-
Modal, the learned feature representation also has different
distributions and simple fusion techniques (such as sum, max
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and concatenation) is not effective. Therefore, after pretrain-
ing, we fine-tune the proposed cross-modal message pass-
ing network with a novel adversarial objective. Compared
with the standard categorial cross-entropy loss, the proposed
adversarial objective function forces the message generator
network transform the most discriminative feature from one
source modal to another target one, which boosts the target
modal ConvNet achieves better performance. The effective-
ness of this adversarial objective is demonstrated in Table 1.

4. EXPERIMENTS

4.1. Experiments Setup

Experiments are mainly conducted on two action recognition
benchmark datasets, namely UCF-101 [16] and HMDB-51
[17], which are currently the largest and most challenging
annotated action recognition datasets. The UCF-101 dataset
consists of 13320 action videos in 101 categories and the
HMDB-51 contains 6766 videos that have been annotated for
51 actions. For both datasets, we use the same training s-
trategy and report average accuracy according to the provided
evaluation protocol.

The mini-batch stochastic gradient descent algorithm is u-
tilized to learn the network parameters, where the batch size is
set to 64 and momentum set to 0.9. We initialize the network
weights with pre-trained models from ImageNet. The pre-
training learning rate is initialized as 0.001 and the fine-tuning
learning rate is initialized as 0.0001, and both of learning rate
decreases to its 1/10 every 4500 iterations. The whole train-
ing procedure stops at 13500 iterations.

4.2. Exploration Study

In this section, we list the performance of several simple fu-
sion methods and our main components for action recogni-
tion on split 1 of HMDB-51 in Table 1. Specifically, we
compare different fusion method without adversarial objec-
tive, referred as SUM, MAX and CMMP+noAL. we see that
the final fusion result of CMMP+noAL is better than SUM
and MAX , which demonstrates that proposed cross-modal
message passing mechanism is more effective for two-stream
fusion.

In addition, we also analyze the effectiveness of the pro-
posed adversarial objective and two-stage training strategy.
Specifically, we compare two kind of settings: without and
with adversarial objective. The results are summarized in Ta-
ble 1. First, we see that the performance of MAX+AL is
a little better than AL for spatial ConvNets, temporal Con-
vNets and Fusion result. Then, we resort to the two-stage
training framework to help initialize CMMP and achieve bet-
ter performance using the proposed adversarial objective. As
shown in Table 1, the proposed adversarial objective boost-
s the recognition performance by a significant margin, espe-

cially for temporal ConvNets, which implies that the message
from A-Modal to M-Modal is very necessary.

Table 1. CMMP components analysis on split 1 of HMDB-
51.

Method Spatial Temporal Fusion
SUM 53.01 54.05 53.79
MAX 52.61 52.29 52.68

CMMP+noAL 46.99 47.71 60.13
SUM+AL 51.70 52.29 51.96
MAX+AL 53.79 53.66 53.88

CMMP 50.07 65.23 66.67

4.3. Comparison with the-state-of-the-art

After exploring the effect of components in the proposed
method, we compare our method with many other approach-
es and the results are summarized in Table 2. In detail,
we compare the proposed method with traditional methods
such as improved trajectories (iDTs) [2] and deep learn-
ing approaches such as two-stream networks [1], factorized
spatio-temporal convolutional networks [18], 3D convolu-
tional networks (C3D) [8], trajectory-pooled deep convo-
lutional descriptors [19], and spatio-temporal fusion CNNs
[11].

Table 2. Mean accuracy on the UCF-101 and HMDB-51.
Model Method UCF-101 HMDB-51

Traditional iDT+FV [2] 85.9 57.2
iDT+HSV [20] 87.9 61.6

Deep

EMV-CNN [9] 86.4 -
Two Stream [1] 88.0 59.4
FST CN [18] 88.1 59.1

C3D [8] 85.2 -
VideoLSTM [21] 89.2 56.4

TDD+FV [19] 90.3 63.2
Fusion [11] 91.8 64.6

Ours CMMP 91.3 65.9

5. CONCLUSION

In order to fuse two-stream ConvNets more effectively for ac-
tion recognition, CMMP is proposed. This method transfers
the discriminative message from one modal to another, which
alleviates the inconsistent distribution and representation of
different modalities. We also introduced a novel adversarial
objective to fine-tune the whole network, and boosts the per-
formance even further. A huge gain is observed compared
with other simple fusion methods, and a comparable perfor-
mance is achieved in whole benchmark datasets.
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