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ABSTRACT
In this paper, we aim at the problem of tensor data comple-
tion. Tensor-train decomposition is adopted because of its
powerful representation ability and linear scalability to ten-
sor order. We propose an algorithm named Sparse Tensor-
train Optimization (STTO) which considers incomplete data
as sparse tensor and uses first-order optimization method to
find the factors of tensor-train decomposition. Our algorithm
is shown to perform well in simulation experiments at both
low-order cases and high-order cases. We also employ a ten-
sorization method to transform data to a higher-order form to
enhance the performance of our algorithm. The results of im-
age recovery experiments in various cases manifest that our
method outperforms other completion algorithms. Especially
when the missing rate is very high, e.g., 90% to 99%, our
method is significantly better than the state-of-the-art meth-
ods.

Index Terms— incomplete data, tensor completion,
tensor-train decomposition, tensorization, optimization

1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
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tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-
ality” and a better model to process high-order tensor is em-
ployed in our method. The works in our paper are concluded
as below: (a) We propose an algorithm named Sparse Tensor-
train Optimization (STTO) which considers incomplete data
as sparse tensor and optimize the factors of tensor-train de-
composition by gradient descent method. By optimizing the
factors of tensor-train decomposition in sparse format, the
computational complexity is significantly reduced. The ten-
sor decomposition factors are used to approximate the miss-
ing entries. (b) Using synthetic data, we conduct simulation
experiments to compare our algorithm with the state-of-the-
art algorithms in four different dimensions. (c) We provide a
data dimension ascending scheme for image data which can
improve the performance of our algorithm. It is particularly
useful to process image data in irregular missing cases like
whole row missing and block missing. (d) We carry out sev-
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eral real world data experiments, and the results in simulation
data and image data show that our method outperforms the
state-of-the-art approaches.

2. NOTATIONS AND TENSOR-TRAIN
DECOMPOSITION

2.1. Notations

In this paper, we adopt the notations from [1]. Scalars are
denoted by normal lowercase letters, e.g., x, and vectors are
denoted by boldface lowercase letters, e.g., x. Matrices are
denoted by boldface capital letters, e.g., X. Tensors of order
N ≥ 3 are denoted by boldface Euler script letters, e.g., X .
X(n) denotes the nth matrix of a matrix sequence, and the
representations of vector and tensor sequence are denoted in
the same way. When given a tensor X ∈ RI1×I2×···×IN , the
(i1, i2, · · · , iN )th element of X is denoted by xi1i2···iN or
X (i1, i2, · · · , iN ).

The inner product of two tensors X , Y ∈ RI1×I2×···×IN

is defined as 〈X ,Y〉 =
∑

i1

∑
i2
· · ·
∑

iN
xi1i2···iN yi1i2···iN .

Furthermore, the Frobenius norm of X is defined by
‖X‖F =

√
〈X ,X 〉. The Hadamard product is denoted

by ∗ which is an element-wise product of vectors, matrices
or tensors of same sizes. The Kronecker product of two
matrices X ∈ RI×K and Y ∈ RJ×L is X⊗Y ∈ RIJ×KL.

2.2. Tensor-train Decomposition

The most prominent advantage of tensor-train decomposition
is that the amount of model parameters will not grow expo-
nentially by data dimension. It decomposes a tensor into a
sequence of three-way tensor factors (core tensors). In partic-
ular, the TT decomposition of a tensor X ∈ RI1×I2×···×IN

can be expressed as follow:

X =� G(1),G(2), · · · ,G(N) �, (1)

where G(1),G(2), · · · ,G(N) is a sequence of three-way core
tensors of size r0×I1×r1, r1×I2×r2, · · · , rN−1×IN×rN ,
r0 = rN = 1. r = {r0, r1, r2, · · · , rN−1, rN} is named TT-
rank which limits the size of every core tensor. Furthermore,
Each element of tensor X can be represented by core tensors
as follow:

xi1i2···iN =

N∏
n=1

G
(n)
in

, (2)

where G
(n)
in

is the inth slice of the nth core tensor of size
rn−1 × rn, n = 1, 2, · · · , N , in ∈ {1, 2, · · · , In}.

3. SPARSE TENSOR-TRAIN OPTIMIZATION

3.1. Our Previous Work

In our previous work [12], we proposed an algorithm called
Tensor-train Weighted OPTimization (TT-WOPT) which

achieves high performance in data completion task. How-
ever, TT-WOPT considers all the missing entries of data as
zero, and it computes the whole scale of tensor in every it-
eration. If the data scale is huge and missing rate is high,
TT-WOPT will cost much computer memory space and be
ineffective as it computes the whole scale tensor of which
only a small percentage of entries is useful.

3.2. STTO Algorithm

In order to solve the problems of TT-WOPT as mentioned
in Section 3.1, our proposed algorithm STTO, which only
uses observed entries to compute the gradient of every core
tensor is proposed. Consider Y is the observed tensor with
missing entries, X is the tensor approximated by core ten-
sors, and the number of all the observed entries is M . De-
fine the index of the mth observed entry as {im1 , im2 , · · · , imN},
m = 1, · · · ,M , we have ym = Y(im1 , im2 , · · · , imN ), xm =
X (im1 , im2 , · · · , imN ). According to equation (2), xm can be
written as:

xm =

N∏
n=1

G
(n)
imn

. (3)

For one observed entry of tensor Y , we formulate the objec-
tive function as:

f(G
(1)
im1

,G
(2)
im2

, · · · ,G(N)
imN

) =
1

2

∥∥∥∥∥ym −
N∏

n=1

G
(n)
imn

∥∥∥∥∥
2

F

. (4)

For n = 1, 2, · · · , N , and m = 1, · · · ,M , the partial deriva-
tives of every used slice G

(n)
imn

of this entry is calculated by:

∂f

∂G
(n)
imn

= (xm − ym)(G>n
imn

G<n
imn

)T , (5)

where G>n
imn

=
N∏

n=n+1
G

(n)
imn

, G<n
imn

=
n−1∏
n=1

G
(n)
imn

. If we con-

sider the incomplete tensor as a sparse tensor, only the ob-
served entries need to be enumerated. We arrange all the ob-
served entries into vector y ∈ RM , and arrange the according
entries which are approximated by core tensors into x ∈ RM .
Then the optimization objective function of all missing entries
can be formulated by:

f(G(1),G(2), · · · ,G(N)) =
1

2
‖y − x‖2F . (6)

By equation (3) and (4), the optimization objective function
can also be formulated as follow:

f(G(1),G(2), · · · ,G(N)) =
1

2

M∑
m=1

‖ym − xm‖2F . (7)

So the sum gradient of every slice G
(n)
j of every core tensor

is the accumulation of the slice gradients in equation (5) with
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the same index, that is:

∂f

∂G
(n)
j

=

M∑
m=1

m:imn =j

(xm − ym)(G>n
imn

G<n
imn

)T , (8)

j = 1, 2, · · · , In, and n = 1, 2, · · · , N . After all the gradi-
ents of every slice of core tensors are obtained, any first-order
optimization method can be applied to the STTO algorithm.
The whole process of STTO is summarized in Algorithm 1.
The computational complexity of TT-WOPT and STTO is
O(rN−1IN−1) and O(MrN−1), respectively. From this we
can see STTO largely reduces the computational complexity
and is totally free from dimensionality of tensor.

Algorithm 1 Sparse Tensor-train Optimization (STTO)
1: Input: incomplete sparse tensor Y and TT-rank r.
2: Initialization: core tensors G(1),G(2), · · · ,G(N)of approximated

tensor X .
3: While the optimization stopping condition is not satisfied
4: For n=1:N
5: For j=1:In
6: Compute ∂f

∂G
(n)
j

=
∑M

m=1
m:imn =j

(xm − ym)(G>n
imn

G<n
imn

)T .

7: End
8: End
9: Update G(1),G(2), · · · ,G(N) by gradient descent method.
10: End while
11: Output: G(1),G(2), · · · ,G(N).

4. EXPERIMENTS

In this section, our proposed STTO is compared with two
state-of-the-art algorithms: CP weighted optimization (CP-
WOPT) [2] and Fully Bayesian CP (FBCP) [3]. Simulation
experiments, color image data experiments are conducted to
validate the effectiveness of our algorithm. In addition, we
provide a tensorization method to transform visual data to a
higher dimension. This method can enhance the structure re-
lation information of data and improve the performance of our
algorithm.

For evaluation indices, we use RSE (Relative Square Er-
ror) for simulation data and image data. PSNR (Peak Signal-
to-noise Ratio) is used to measure the quality of reconstructed
image data. In order to have a more clear comparison with
CP-WOPT, we adopt the same optimization method as pa-
per [2]. We apply nonlinear conjugate gradient (NCG) with
Hestenes-Stiefel updates [13] and the Moré-Thuente line
search algorithm [14]. All the methods are implemented by
an optimization toolbox named Pablano Toolbox [15] and
optimization stopping condition is set as maximum number
of iterations.

4.1. Simulations

We consider to use values produced from a highly oscillat-
ing function: f(x) = sinx

4 cos(x
2) [16] as simulation data,

which is expected to be well approximated by all the tensor
completion algorithms. The four tested data structures are
26×26×26 (3D), 7×7×7×7×7 (5D), 4×4×4×4×4×4×4
(7D), 3×3×3×3×3×3×3×3×3 (9D). The TT-ranks and
CP-ranks of the four simulation are set to make the number of
model parameters of the three algorithms as close as possible
respectively.

From Fig. 1. we can see, our method performs best
among the three algorithms almost in every situation. Espe-
cially when the dimension of data is increase, our algorithm
can maintain the RSE values while the performance of the
other two algorithms falls quickly.

Fig. 1. RSE comparison of three algorithms under four differ-
ent tensor dimensions. Missing rates of data are tested from
0% to 90%.

4.2. Image Data Completion

4.2.1. Visual Data Tensorization Method

From the simulation results we can see STTO can perform
well in high-order cases, so we provide the below method
to transform visual data to higher-order to enhance the
performance of our algorithm. The original size of every
image data is 256 × 256 × 3. First the three-way ten-
sor image is reshaped to a seventeen-way tensor of size
2× 2× · · ·× 2× 3 and permute the tensor according to order
{1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17}. Then we re-
shape the tensor to a nine-way tensor of size 4×4×· · ·×4×3.
The first order of the transformed tensor contains the data of
a 2 × 2 pixel block of the image and the following orders of
the tensor describe the expanding pixel blocks of the image.
This nine-way tensor is considered to be a better structure
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of the image data. This tensorization method is applied to
STTO in all of the following image experiments. The other
two algorithms use original three way tensor form because
they perform better in low-order tensor.

4.2.2. Random Missing

We first adopt one benchmark image named “Lena” to see
the best performance of all the algorithms in random missing
cases. Briefly, we only compare the three algorithms in high
missing rate situations. TT-ranks and CP-ranks are set prop-
erly to obtain the best results. The visualized experiment re-
sults in Fig. 2. show that our STTO algorithm outperforms
other algorithms distinctly. Particularly, when the missing
rate reaches 98% and 99%, our algorithm with our visual data
tensorization method can recover the image well while other
algorithms fail totally.

Fig. 2. Visualizing results of image recover performance of
three algorithms under five missing rates.

4.2.3. Irregular Missing

In this experiment, images with whole row missing or block
missing are tested by the three algorithms. The visualized
results of Fig. 3. and values of RSE and PSNR from Table 1.
show that STTO with visual data tensorization method can
recover images with whole row missing and block missing
well.

5. CONCLUSIONS

In this paper, we first elaborate the basis of tensor and tensor-
train decomposition. Then STTO algorithm which is efficient
and has low computational complexity is proposed. It uses
observed entries of sparse tensor to optimize the core ten-
sors of tensor-train model and recover the missing data. From

Fig. 3. Visualizing results of image recover performance of
three different algorithms under two special missing cases.

Table 1. Comparison of the recover performance (RSE and
PSNR) of three algorithms under two special missing cases.

row missing block missing
image lena peppers sailboat lena peppers sailboat

STTO
RSE

PSNR
0.1138
24.00

0.1661
20.80

0.1767
19.93

0.1323
22.69

0.1611
21.06

0.1704
20.25

CP-WOPT
RSE

PSNR
0.5401
10.86

0.5546
10.85

0.5545
10.34

0.1746
20.61

0.2252
18.27

0.2082
19.00

FBCP
RSE

PSNR
0.5503
10.46

0.5594
10.58

0.5586
10.18

0.1498
21.66

0.1671
20.79

0.1764
20.01

the simulation experiments, we can see our algorithm outper-
forms the state-of-the-art methods in both low-order cases and
high-order cases. In addition, image completion experiment
results prove that STTO with our tensorization scheme can
achieve a high performance under high missing rate cases.
The remarkable results on image irregular missing cases also
show advantages of our algorithm and tensorization method.
From the experiment results we can see tensor-train decom-
position with high-order tensorizations can achieve high com-
pression and representation abilities. Furthermore, it should
be noted that the performance of tensor-train decomposition
is sensitive to the selection of TT-ranks. Hence, we will study
on how to optimize tensor factors and TT-ranks simultane-
ously in our future work.
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