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ABSTRACT 

 

Matrix factorization (MF) and its extensions have been 

intensively studied in computer vision and machine learning. 

In this paper, unsupervised and supervised learning methods 

based on MF technique on complex domain are introduced. 

Projective complex matrix factorization (PCMF) and 

discriminant projective complex matrix factorization 

(DPCMF) present two frameworks of projecting complex 

data to a lower dimension space. The optimization problems 

are formulated as the minimization of the real-valued 

functions of complex variables. Motivated by independence 

among extracted features, Fisher linear discriminant is used 

as hard constraint on supervised model. Experimental results 

on facial expression recognition (FER) show improved 

classification performance in comparison to real-valued 

features of both unsupervised and supervised NMFs.     

 

Index Terms— Complex matrix factorization, 

discriminant feature, image representation, NMF, LDA 

 

1. INTRODUCTION 

 

Image representation (IR) is one of the most important 

issues in computer vision and pattern recognition. The 

common object of an IR system is to transform the input 

signal into a new representation which reduces its 

dimensionality and explicates its latent structures. One of 

fundamental tools for IR is matrix factorization (MF) 

techniques that decomposes the original matrix into two or 

more matrix factors. Among matrix factorization methods, 

nonnegative matrix factorization (NMF) [1, 2] is known for 

its parts-based representation for images which has 

psychological and physiological interpretation. As a variant 

of NMF, a low-dimensional compact representation on 

complex domain, exemplar-embed complex matrix 

factorization (EE-CMF) [3] reconstructs a target matrix 

based on a complex matrix factorization model. There are 

two stages in structured EE-CMF for image representation 

including transforming the pixel intensive values to complex 

numbers and decomposing the transferred complex data 

matrix into an exemplar-embed base and a new coefficient 

complex matrix. EE-CMF shows its potential and promising 

performance for data representation.  

However, both NMF and EE-CMF are the unsupervised 

learning algorithms which are not able to incorporate the 

label information. In order to extract the features that better 

for image representation, some extensions of NMF were 

proposed to utilize the association between the observations 

and its class information. Graph regularized nonnegative 

matrix factorization (GNMF) [4, 5], a semi-supervised 

NMF, encoded the geometrical information of the data space 

by constructing the nearest neighbor graph. Supervised 

learning model, discriminant NMF (DNMF) [6] tried to 

maximize the discriminative ability of learned features 

through integrating Fisher's criterion [7] into NMF. 

Encouraged by the great success of the supervised NMFs as 

well as MF techniques in complex field for image 

representation, we develop two complex matrix factorization 

models referred to as projective complex matrix 

factorization (PCMF) and discriminant projective complex 

matrix factorization (DPCMF). The proposed approaches 

adopt the concept of the cosine dissimilarity metric [8] to 

minimize the error reconstruction on decomposing a real 

matrix and integrate the Fisher's criterion to get the optimal 

discriminate feature in a supervised case. It is witnessed that 

the cosine divergence in the real field is exploited implicitly 

by its equivalence with squared Euclidean divergence in the 

complex domain [3, 9-11]. An objective function of real 

variables with the cosine dissimilarity distance is simplified 

by a corresponding function of complex variables. The 

proposed PCMF and DPCMF algorithms for image 

representation are designed with two main phases similar to 

the work in [3]. Firstly, the raw pixel intensive values of the 

original images are transferred to complex numbers via 

Euler formula [12] and vectored into a complex data matrix. 

Secondly, complex matrix decomposition is processed based 

on optimizing the real-valued function of complex variables.   

In summary, the contributions of this paper are three-

folds: 

1. We introduce the supervised and unsupervised 

learning frameworks for image representation (PCMF and 

DPCMF). Our proposed algorithms are more efficient and 

flexible than real NMF models and can provide much 
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intuitive recognition results. Without limiting the sign of 

data, the developed methods are able to be applied on real-

world applications, particularly the field of complex-valued 

data processing, such as communication and acoustic, etc.  

2. To the best of our knowledge, DPCMF is the first 

work on the supervised learning using complex matrix 

factorization in which the label information is used as hard 

constraints. In this supervised learning framework, label 

knowledge is integrated into loss function, making the 

learned representation as discriminative as possible.  

3. Our approaches are practically effective on facial 

expression recognition (FER) task. Experimental results on 

two popular facial expression image datasets, JAFFE and 

CK+, confirm the effectiveness of the proposed models 

comparing with the complex EE-CMF and the representative 

unsupervised/supervised NMF algorithms. 

 

2. EULER FORMULATION FOR SPACE 

TRANSFORMATION 

 
It is proved that the cosine dissimilarity metric in the real 

domain is robust to suppress outliers and there is an 

equivalence between the cosine-based distance measures on 

the real field and the squared Euclidean norm on the 

complex field [3, 9-11]. According to these observations, we 

first perform space transformation as described as follows.  

Consider the NM matrix X containing pixel intensive 

values of M original images. Each image was vectored as a 

column of N elements in X. Similar to the works in [3, 9-11], 

we construct a map E using the Euler’s formulation [12] to 

convert the real matrix X into its complex space as follows: 
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As a result, the real matrix X = [X1, X2, …, XM] are 

converted to a complex matrix which then can be projected 

to the lower dimension subspace by some complex matrix 

decomposition methods. We will propose two methods of 

complex matrix factorization in the next sections. 
   
 

3. THE PROPOSED METHODS 

 

In this section, we introduce the methods of complex matrix 

factorization with unsupervised and supervised learning 

techniques. We assume that the training data are given as a 

matrix D = [D1, D2, …, DM], where Di
N , and M is the 

total number of training samples. Let ni be the number of 

vectors in the ith class, and C be the number of classes. 

 

3.1 Projective complex matrix factorization 

 

The unsupervised projective complex matrix factorization 

(PCMF) projects high-dimensional complex samples D onto 

a lower-dimensional subspace spanned by a basis B and 

considers BTD as their encoding such that D≈ BBTD. 

The objective function of PCMF is given by: 
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3.2 Discriminant projective complex matrix factorization 

 

The supervised discriminant projective complex matrix 

factorization (DPCMF) integrates Fisher's criterion [6] into 

PCMF to utilize the label information. In the lower-

dimensional subspace, DPCMF expects minimizing the 

distance between any two samples of the same class and 

meanwhile maximizing the distance of the samples in 

different classes. In other words, the extracted features of the 

supervised learning algorithm DPCMF have better 

discriminant ability. The cost function of DPCMF is given 

by: 
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Herein  and  are hyperparameters to obtain the 

tradeoff between the accuracy of the reconstruction error 

and two discriminative terms, Sw is the within-class scatter 

matrix and Sb is the between-class scatter matrix. The 

formulation of Sw and Sb are defined as follows: 

 
w

1 1

1 1
( )( )

inC
T

j i j i
i j

i
C n

 
 

   S d d   (5) 

 
1 1

1
( )( )

( 1)

C C
T

b i j i j
i jC C

   
 

  


S  (6) 

where i denotes the mean values of class i in D and 

1

1 in

i j
j

i
n




 d . 

 

 

 
anger disgust fear happiness sadness surprise neutral 

Fig. 1. Sample images of seven facial expressions from the 

CK+ dataset [18] (first row) and JAFFE dataset [19] 

(second row). 
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TABLE I   

FACIAL EXPRESSION RECOGNITION RATE (%) USING THE CK DATASET 

WITH DIFFERENT SUBSPACE DIMENSIONALITIES  

 No. 

Base 
DPCMF PCMF EE-CMF DPNMF PNMF DNMF NMF 

20 96.78 95.95 95.43 95.89 77.25 24.24 85.41 

30 97.31 97.00 92.25 96.32 80.83 25.19 90.99 

40 97.15 96.96 91.24 96.69 81.30 28.26 93.88 

50 97.11 97.15 95.06 96.65 85.32 28.68 94.5 

60 97.31 97.17 96.14 97.02 84.54 38.74 95.06 

70 97.44 97.05 96.59 96.80 86.39 38.49 95.18 

80 97.27 97.21 96.74 97.07 87.47 38.93 95.93 

90 97.25 97.19 96.63 96.96 86.89 40.48 95.95 

100 97.20 97.11 96.78 97.17 87.99 45.76 96.03 

Ave. 97.20 96.98 95.21 96.73 84.22 34.31 93.66 

 

3.3 Gradient descent method for optimal solutions 

 

It can be seen that equations (2) and (4) are optimization 

problems of a real-valued function with one complex 

variable B. The complex gradient descent algorithm [3, 10, 

13] is employed by starting with the randomly initialized 

matrix B and applying the following update rules:  
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The Writinger's calculus [14-15] is used to evaluate the 

gradient in the following form: 

 *

( ) ( )
( )

(Re ) (Im )

f f
f i

 
  

 B

B B
B

B B
 (8) 

The resulting gradients for PCMF and DPCMF are given by 

equations (9) and (10), respectively 
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We utilized the first-order Taylor series expansion [15] 

for the real-differentiable function f(B) and the 

backtracking-Armijo search [17] to estimate the step size t . 

It is known that following equation (11) is true. 

 *
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Therefore, the step size t must satisfy t = ts , where 

0 <  < 1, and st is the first non-negative integer such that: 

  *
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4. EXPERIMENTS 

 

The unsupervised PCMF and supervised DPCMF methods 

were explored for data representation by learning the base 

Btrain firstly from the training set Dtrain such that 

Dtrain=Btrain(Btrain)H Dtrain. The learned feature Ctrain then is 

obtained from production of (Btrain)H and Dtrain. The testing 

phase was carried out by projecting the tested samples Dtest 

onto the feature space and obtaining the encode Ctest= 

(Btrain)H Dtest. Finally, Ctrain and Ctest were considered as the 

input data of a nearest-neighbor (NN) classifier for 

recognition phase.  

Two popular FER datasets, the extended Cohn-Kanade 

(CK+) [18] and the JAFFE [19], were used for evaluations. 

Five frames of each labeled sequence in the CK+ dataset 

were taken and processed as static images. One of them was 

collected for the training set and the remaining for the 

testing set. In the JAFFE dataset, one image of each 

expression per person was selected randomly to set up the 

training set and using the rest images for testing. Fig. 1 

shows sample images from the CK+ and JAFFE datasets. 

We validate the effectiveness of the proposed PCMF and 

DPCMF by comparing them to the most related methods 

including: the complex model EE-CMF [3], the 

unsupervised/supervised projective NMF [20-21], and the 

unsupervised/supervised NMF [1, 6]. 

The parameters  and   were tested by starting with 

small values and changing them stepwise. The practical 

values were set in the range [0.1, 0.5]. 

4.1. Recognition Results on the CK+ Dataset  
 

Table 1 reports the average accuracies of the proposed 

methods and the compared algorithms over different 

dimensionalities. It shows that if the projection space has 

higher dimensionality, the better recognition accuracy 

becomes better. Overall, the complex algorithms 

consistently outperform the real NMFs, and the method with 

unsupervised technique is less effectiveness than the method 

with supervised technique. It is seen that 97.20%, 96.98% 

and 96.73% recognition accuracies are achieved by 

DPCMF, PCMF and DPNMF, respectively. The complex 

EE-CMF just obtains 95.21%. Since obtaining only 34.31% 

recognition accuracy, DNMF is not useful for extracting 

discriminative features from CK+ dataset. 

To clarify which facial parts are more deterministic on 

the recognition performance, we computed the confusion 

matrix of the proposed DPCMF and give results in Table 2. 

It is observed that, neutral can be classified well with highest 

accuracy (100%). Because of confusing with sadness 

(7.35%) and happiness (1.47%), anger is recognized with 

the lowest accuracy (91.18%). The other five expressions 

are recognized with accuracy ranged from 94.74% to 

98.44%. 

TABLE II 

CONFUSION MATRIX (%) OF 7-CLASS FACIAL EXPRESSION 

RECOGNITION USING DPCMF ON CK+ DATASET  

 anger disgust fear happiness sadness surprise neutral 

anger 91.18 0 0 1.47 7.35 0 0 

disgust 3.95 94.74 0 0 0 1.32 0 

fear 0 0 98.33 0 0 1.67 0 

happiness 1.00 2.00 0 97.00 0 0 0.00 

sadness 0 0 0 0 98.44 0.00 1.56 

surprise 0 0 0 0 2.88 97.12 0 

neutral 0 0 0 0 0 0 100 
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TABLE III 

 FACIAL EXPRESSION RECOGNITION RATE (%) USING THE JAFFE 

DATASET WITH DIFFERENT SUBSPACE DIMENSIONALITIES  

 No. 

Base 
DPCMF PCMF EE-CMF DPNMF PNMF DNMF NMF 

20 70.42 69.58 66.99 63.01 50.00 15.31 65.24 

30 70.98 69.02 66.36 66.78 56.01 14.90 68.11 

40 72.31 71.26 72.31 69.58 57.83 15.10 70.84 

50 72.66 71.40 72.03 69.58 60.21 15.59 71.68 

60 72.24 72.45 72.45 70.49 57.34 15.66 71.12 

70 72.45 72.38 72.31 70.07 60.56 15.24 69.79 

80 73.01 71.75 72.59 71.75 62.03 15.38 26.15 

90 72.17 72.80 71.68 71.54 63.64 15.45 16.01 

100 72.73 72.24 73.57 72.31 61.54 17.48 18.60 

Ave. 72.11 71.43 71.14 69.46 58.80 15.57 53.06 

 

TABLE V 

 FACIAL EXPRESSION RECOGNITION RATE (%) USING THE 

OCCLUDED CK + IIMAGES (CASE OF OCCLUSION ON TRAINING SET) 

 No. 

Base 
DPCMF PCMF EE-CMF DPNMF PNMF DNMF NMF 

20 45.90 48.26 53.28 41.49 16.03 21.49 45.12 

30 59.17 55.76 59.17 47.82 15.54 21.49 50.22 

40 59.83 57.85 59.01 51.74 17.30 21.49 52.17 

50 68.43 60.99 60.06 50.58 16.14 21.49 49.68 

60 71.74 60.66 61.60 51.79 17.30 21.49 55.73 

70 74.33 59.34 62.15 56.80 15.48 21.49 60.57 

80 76.53 60.61 63.80 58.07 15.26 21.49 61.48 

90 77.85 60.72 63.47 55.87 15.37 21.49 63.95 

100 80.28 58.35 64.85 57.41 15.59 13.22 65.25 

Ave. 68.23 58.06 60.82 52.40 16.00 20.57 56.02 

 TABLE VI 

 FACIAL EXPRESSION RECOGNITION RATE (%) USING THE 

OCCLUDED CK + IIMAGES (CASE OF OCCLUSION ON TESTING SET) 

 No. 

Base 
DPCMF PCMF EE-CMF DPNMF PNMF DNMF NMF 

20 66.32 65.95 73.26 56.24 34.38 24.55 50.62 

30 72.23 73.31 68.77 59.26 35.87 25.41 58.39 

40 77.81 77.27 68.48 66.12 43.93 26.98 62.27 

50 80.62 79.71 68.71 71.86 44.05 35.45 65.29 

60 83.80 82.69 72.2 75.25 45.91 40.33 70.37 

70 84.83 83.18 71.31 75.33 46.61 36.36 70.33 

80 86.36 84.67 73.91 77.56 49.88 40.00 73.31 

90 85.54 85.17 73.38 79.79 52.64 40.95 73.39 

100 86.24 85.12 73.2 79.71 51.36 37.98 75.25 

Ave. 80.42 79.67 71.47 71.24 44.96 34.22 66.58 

 

4.2. Recognition Results on the JAFFE Dataset 
 

In JAFFE dataset, we used the same parameters as those 

used in the CK+ dataset. We found that the images in the 

JAFFE are more challenging. Based on the results on the 

recognition accuracy (Table III) and the confusion matrix 

(Table IV), matrix factorization on complex domain are 

much robust in capturing the texture and salient features of 

the face. Similar to the results in section 4.1, the highest 

recognition rates, 72.11%, 71.43% and 71.14%, are obtained 

by DPCMF, PCMF and EE-CMF. The unsupervised 

learning algorithms DNMF and NMF have a tendency to 

extract features with a large dimension, and are not suitable 

for overfitting case (number of bases are bigger 70). The 

fear expression has lowest recognition rate (just 45.45%) 

because it has more overlapping (36/36%) with surprise 

emotion. 
 

4.2. Recognition Results on the occluded CK+ images 

 

The effectiveness of the proposed approaches is also 

validated by their performance on the occluded CK+ images. 

Two images among five static frames per expression of each 

person were processed so that they had occlusion. Some 

occluded images are shown in Fig. 2. Creating 

occlusion/unocclusion on training/testing images were 

designed as two cases in occluded experiments. The detailed 

recognition results are shown in Table V and VI in which 

the best performances belong to DPCMF and PCMF.  It can 

be observed that the occlusion on training set makes the 

recognition more difficultly than the occluded testing set.   

 

5. CONCLUSION 

 

This paper has presented two efficient algorithms for 

robust image representation. The novel approaches take 

advantages on complex matrix factorization to learn 

subspace. The combination with Fisher’s criteria provides a 

supervised model which is reliable and stable to extract the 

meaningful features and make the classification task much 

easier. The proposed models uncover the low-dimensional 

structures hidden in the high-dimensional data and gets rid 

of the data redundancy, and thus significantly enhance the 

recognition performance. The future works are focused on 

extending the proposed approaches to the nonlinear 

representation and also testing their performance on various 

type of dataset, particularly on complex data such as Fourier 

feature of acoustics data.   

TABLE IV 

CONFUSION MATRIX (%) OF 7-CLASS FACIAL EXPRESSION 

RECOGNITION USING DPCMF ON JAFFE DATASET  

 anger disgust fear happiness sadness surprise neutral 

anger 60.00 20.00 5.00 5.00 0 10.00 0 

disgust 5.26 68.42 5.26 0 10.53 10.53 0 

fear 0 4.55 45.45 0 4.55 36.36 9.09 

happiness 0 0 9.52 66.67 14.29 9.52 0 

sadness 0 0 5.00 0 90.00 0 5.00 

surprise 9.52 9.52 4.76 0 19.05 57.14 0 

neutral 0 0 10.00 0 5.00 0 85.00 

 

 

 

anger disgust fear happiness sadness surprise neutral 

Fig. 2. Cropped face images of six facial expressions and 

neutral with occlusions from the CK+ dataset 
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