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ABSTRACT

The univariate statistics of bandpass-filtered images provide
powerful features that drive many successful image quality
assessment (IQA) algorithms. Bivariate Natural Scene Statis-
tics (NSS), which model the joint statistics of multiple band-
pass image samples also provide potentially powerful features
to assess the perceptual quality of images, by capturing both
image and distortion correlations. Here, we make the first
attempt to use bivariate NSS features to build a model of no-
reference image quality prediction. We show that our bivari-
ate model outperforms existing state of the art image quality
predictors.

Index Terms— Second Order Natural Scene Statistics,
Blind Image Quality Assessment, Multimedia

1. INTRODUCTION

Digital images have witnessed tremendous growth as a
medium for representation and communication. Since human
observers are the ultimate receivers of the visual information
in images, subjective experiments using human observers
remains the most reliable way to assess the quality of an
image. Given that 1.3 trillion images were captured in 2017
[1], relying on human observers to assess picture quality is
unrealistic. Building models that predict the quality of im-
ages in accordance with human observers is a more feasible
solution to this problem. The study of blind (no-reference)
IQA models involves building learned predictors that deploy
low-level image descriptors as inputs. Many models has been
developed that extract distortion specific features [2, 3], and
[4], while others train learning machines on NSS features
computed from distorted images. Examples of this approach
include [5], and [6]. Other notable models, such as Ye et al.
[7] learn visual code words predictive of image quality, and
the completely blind model [8], which measures a distance
between distorted and pristine Natural Scene Statistics (NSS)
features, without requiring any training on either distorted
images or on human opinion scores. Saha et al. [9] used
visibility measured over multiple scales to predict picture
quality. In this work, we combine univariate and bivariate

NSS features to build a no-reference IQA model that strongly
competes with existing models.

We begin in section 2 by presenting the bivariate feature
model, section 3 presents the new predictor and in section 4
we evaluate its performance against other models.

2. NORMALIZED BANDPASS IMAGE
CORRELATION MODEL

Here we summarize the normalized bandpass image correla-
tion model, on which we define a set of bivariate IQA fea-
tures.

First deploy a bank of steerable filters [10] to decompose
a luminance image. NSS models are also applicable to other
color spaces [11]. Steerable filters are often used to model
bandpass simple cells in primary visual cortex [12]. A steer-
able filter at a given frequency tuning orientation θ1 is defined
by:

Fθ1(x) = cos(θ1)Fx(x) + sin(θ1)Fy(x), (1)

wherexxx = (x, y), and Fx and Fy are the gradient components
of a two-dimensional unit-energy bivariate isotropic gaussian
function having a scale parameter σ:

G(x) =
1

2πσ2
e

−(x2+y2)

2σ2 , (2)

Each analyzed image is passed through a bank of steer-
able filters of scales σ ∈ [2, 3, ..., 15] and over 15 frequency
tuning orientations θ1 ∈ [0, π/15, 2π/15, ..., π], yielding 210
bandpass responses. We exclude σ = 1 since steerable filters
become less well defined at that scale.

Next, we apply divisive normalization on all of the steer-
able filter responses to model the nonlinear adaptive gain con-
trol of V1 neuronal responses in the visual cortex [13]. The
divisive normalization model is defined as:

uj(x) =
wj(x)√

s+
∑

y g(j(y)wj(y))2
, (3)

where wj are the steerable filter responses from filter indexed
j, u are the coefficients obtained after divisive normaliza-
tion, and s = 10−4 is a stabilizing saturation constant. The
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weighted sum in the denominator is computed over a spa-
tial neighborhood of pixels from the same sub-band, where
g(xi, yi) is a circularly symmetric Gaussian function having
unit volume. To match the increase in scale applied at the
steerable filtering step (translated by increasing σ), the vari-
ance of g(xi, yi) is also increased linearly as a function of σ.

Next, define a window at a fixed position within the
cropped image and another sliding window of the same di-
mensions. Denote the distance between the center of the two
windows of bandpass, normalized image samples of interest
by d, and the angle between them by θ2. Also define the rela-
tive angle θ2−θ1, where θ1 is the sub-band tuning orientation
relative to the horizontal of the bandpass filter. Then, compute
the correlation between the two windows. The two windows
are separated by horizontal and vertical separations δx and δy ,
which are varied over the integer range 1 to 25, i.e, distances
of

√
δ2x + δ2y at spatial orientations θ2 = arctan(

δy
δx

) (relative
to horizontal). We limited the range θ2 ∈ [0, π[ since the
quantities being measured are symmetrically defined.

The correlation function model expresses a periodic be-
havior in the relative angle θ2 − θ1, and can be modeled as:

ρ(d, σ, θ2) = A(d, σ, θ2)cos(2(θ2 − θ1)) + c(d, σ, θ2) (4)

where A(d, σ, θ2) is the amplitude, c(d, σ, θ2) is an offset, d
is the spatial separation between the target pixels, σ is the
steerable filter spread parameter, and θ2 is as before.

Next, define the peak correlation function:

P (d, σ, θ2) = max(ρ(d, σ, θ2)) = A(d, σ, θ2) + c(d, σ, θ2).
(5)

wherein we may rewrite (4) as:

ρ(d, σ, θ2) = A(d, σ, θ2)cos(2(θ2 − θ1))

+ [P (d, σ, θ2)−A(d, σ, θ2)]. (6)

Lee, Mumford and Huang [14] systematically observed
that the sample covariances of bandpass image pixels follow
an approximate reciprocal power law, of the form 1

|d|b . Here,
we model the peak correlation function as having a more sta-
ble form 1

|d|β+1
. Given a fixed spatial orientation θ2 and a

scale σ, define

P̂ (d, σ, θ2) =
1

( d
α0(θ2)∗σ )β0 + 1

(7)

where {α0, β0} are parameters that control the shape and fall-
off of the peak correlation function, which depend on the spa-
tial orientation θ2. We model A as the difference of two func-
tions of the form (7):

Â(d, σ, θ2) =
1

( d
α1(θ2)∗σ )β1(θ2) + 1

− 1

( d
α2(θ2)∗σ )β2(θ2) + 1

(8)

Table 1. Model’s behavior against several distortions.
Blur JPEG JPEG 2000 Fast Fading White Noise

ρ Monotonic↗ Monotonic↗ Non-monotonic↗ Non-monotonic↗ Slight↗, then
monotonic↘

P Monotonic↗ Monotonic↗ Non-monotonic↗ Non-monotonic↗ Slight↗, then
monotonic↘

A Monotonic↗ Monotonic↗ Non-monotonic↗ Non-monotonic↗ No change

where {α1, β1,α2, β2} are parameters that control the shape
of A and are functions of θ2.

Our goal next is then to find, for a fixed spatial orientation
θ2, the values of the parameters {α0, β0} that produce the best
fit to (7) and the parameters {α1, β1,α2, β2}, yielding the best
fit to (8), resulting in the least mean squared error. We form
two optimization systems for P and A that account for scale
to find those optimal values, that minimize the error. Denote
by D the set of distances for a given spatial orientation θ2.
For the case θ2 = 0 or π/2, D = {0, 1, 2, 3, ..., 24, 25}. Our
optimization systems are then expressed as:

min
α0,b0

∑
d∈D

15∑
σ=2

(P (d, σ, θ2)− P̂ (d, σ, θ2))2

min
α1,b1,α2,β2,b2

∑
d∈D

15∑
σ=2

(A(d, σ, θ2)− Â(d, σ, θ2))2

(9)

We derived and validated the bandpass correlation model in
[15, 16, 17] and we were able to verify that we can recon-
struct the correlation with very low mean squared error. As a
further step, we studied the behavior of the model in the pres-
ence of distortions and found that the model parameters vary
very systematically in the presence of distortions. We sum-
marize in Table 1 the behavior of ρ, P and A as the level of
distortions increases. In [15], we studied the behavior of the
model against different parameters and found that the changes
are reflected thru the behavior of {α0, β0, α1, β1, α2, β2} also
consistently vary with distortions.

3. APPLICATION TO BLIND IMAGE QUALITY
PREDICTION

3.1. Bivariate Features

Motivated by the observation that distortions lead to system-
atic and predictable perturbations of our correlation models’
features, it is natural to consider whether they can be used
to predict the perceptual quality of images. We studied the
quality-predictive efficacies of the parameters {α0, β0, α1,
β1, α2, β2} over multiple spatial angles θ2. We found α0, β0
α1, and α2 to be the most responsive to distortion, and hence
the most useful for quality prediction. We also found that
only using parameters computed along the horizontal, verti-
cal, and diagonal was sufficient; adding more angles did not
further boost performance.
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We noticed that applying non-linear operations to these
raw features boosts performance. Denote by {F1,F2,...,F8}
the quality predictive features derived from our correlation
model. Noting that αi(θ2), βi(θ2); i = 1, 2, 3 are all func-
tions of θ2, then define F1 = β0

−1(0); F2 = β0
−1(π4 );

F3 = β0
−1(π2 ); F4 = β0

−1( 3π
4 ) where β−1 = 1

β ; and
also F5 = α0

−1(0)α0
−1(π2 ); F6 = β0

−1(0)β0
−1(π2 ); F7 =

α1
−1(0)α1

−1(π2 ); and F8 = α2
−1(0)α2

−1(π2 ).
As a first test, we trained a Support Vector Regression

(SVR) model using a radial basis function and 80-20 split on
the LIVE Challenge images using 8 features as input, obtain-
ing Pearsons linear correlation coefficient (PLCC) and Spear-
mans rank ordered correlation coefficient (SROCC) both in
the range of 0.3. Clearly, taken alone the bivariate features
are insufficient predictors of picture quality. However, we
find that they are usefully complementary to existing univari-
ate features for the IQA task.

3.2. Mean Subtracted Contrast Normalized Features

Rather than using our model features in isolation, we combine
them with univariate NSS that have been used successfully for
blind picture quality prediction. The motivation behind this
reasoning is that the bivariate correlation model is not stan-
dalone, rather it extends existing univariate NSS models and
completes a bivariate density model. We computed the mean
subtracted, contrast normalized (MSCN) coefficients as used
in the BRISQUE model [5]. Given an image I , process lumi-
nances via local mean subtraction and divisive normalization,
similarly to (3). Mittal et al. [5] showed that those MSCN
coefficients are disturbed by the presence of distortion. We
extracted the arithmetic mean µ̇, sample kurtosis κ, and skew-
ness γ, from the luminance image to obtain (µ̇L, κL, γL), and
form the chrominance component a* from the CIELAB space
(µ̇a, κa, γa), and used them as additional features in our pre-
dictor.

Furthermore, [5] showed that the histogram of the MSCN
coefficients of both pristine and distorted images are modeled
as fitting a zero-mean generalized gaussian density (GGD):

f(x;φ; γ2) =
φ

2ηΓ(1/φ)
exp[−(

|x|
η

)φ] (10)

where

η = γ

√√√√Γ( 1
φ )

Γ( 3
φ )

(11)

and Γ(·) is the gamma function:

Γ(a) =

∫ ∞
0

ta−1e−tdt a > 0. (12)

The shape parameter φ controls the shape of the distri-
bution, while η controls its variance. We used the moment
matching approach to estimate these two parameters from the

histograms of each considered image’s MSCN coefficients
[18].

Denote by φL and ιL the shape and the variance features
at scale 1 of the luminance component, and by φY and ιY the
scale and shape parameters of scale 1 from the yellow color
channel component. The yellow color channel component is
computed on an RGB image I as:

Y =
R+G

2
− |R−G|

2
−B (13)

Sinno [19] et al. observed that the height of the peak at
zero of the histogram of the MSCN coefficients is highly cor-
related with how well exposed the image is. A small peak
indicates that the image is well-exposed, whereas a high peak
means that the image is poorly-exposed (under exposed or
over exposed). Furthermore, they used this information to
correct for underexposed and overexposed regions in an im-
age using Laplacian pyramid fusion of multiple shots of the
same scene, but varying in exposure. We used the peak at
zero of the histogram of MSCN coefficients as a feature in
our model, and denote it by δ.

We also considered the pairwise products of neighbor-
ing MSCN coefficients along four orientations (H), vertical
(V ), main-diagonal (D1) and secondary-diagonal (D2), sim-
ilarly to [5]. As shown in [5], the histograms of the pairwise
MSCN coefficients are well modeled as asymmetrical gener-
alized gaussian distributed (AGGD):

f(x; ν, η2l , η
2
r) =


ν

(ηl + ηr)
exp[−(

−x
ηl

)] x < 0

ν

(ηl + ηr)
exp[−(

−x
ηr

)] x ≥ 0
(14)

where

ηl = ιl

√
Γ( 1

ν )

Γ( 3
ν )

(15)

ηr = ιr

√
Γ( 1

ν )

Γ( 3
ν )
. (16)

The shape parameter ν controls the ‘shape’ of the distri-
bution while η2l and η2r are scale parameters that control the
spread on each side of the mode, respectively. The param-
eters (ν, η2l , η

2
r) are also estimated using moment-matching

[20]. Next, we also created a reduced resolution version of
the luminance image by low pass filtering followed by down-
sampling by a factor of two, then followed the same procedure
as above to obtain (ν, η2l , η

2
r) at the new scale. In our predic-

tor, we used (ν, η2l ) as features over the four orientations H ,
V , D1, and D2, which we denote by (νH , η2l H ), (νV , η2l V ),
(νD1, η

2
l D1) and (νD2, η

2
l D2). This yields 8 additional fea-

tures.
Combining the correlation features F1 − F2 with the

MSCN features yields a total of 27 features, as summarized
in Table 2.
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Table 2. Features used in the bivariate image quality predic-
tion model.
Feature ID Feature Description

F1 - F4 β0
−1(0), β0

−1(π4 ), β0
−1(π2 ), β0

−1( 3π
4 )

F5 α0
−1(0)α0

−1(π2 )

F6 β0
−1(0)β0

−1(π2 )
F7 α1

−1(0)α1
−1(π2 )

F8 α2
−1(0)α2

−1(π2 )
F9 - F11 µ̇L, κL, γL
F12 - F14 µ̇a, κa, γa
F15 δ

F16 - F17 φL, ιL
F18 - F19 φY , ιY
F20 - F21 νH , η2l H
F22 - F23 νV , η2l V
F24 - F25 νD1, η2l D1
F26 - F27 νD2, η2l D2

4. QUALITY EVALUATION

As a resource to learn a blind IQA model using our model, we
used the recent LIVE in the Wild Image Quality Challenge
Database (“LIVE Challenge”) [21]. This database contains
1162 images captured using mobile devices. This database is
a unique and difficult test of blind IQA predictors. Using a
regression module, we constructed a mapping from the fea-
ture space (Table 2) to human ratings, resulting in a measure
of image quality. We used a support vector regressor (SVR)
[22] that has been successfully deployed in many prior image
quality models [23, 5]. We used the LIBSVM package [24] to
implement the SVR with a radial basis function (RBF) kernel
and to predict the MOS scores. We split the images randomly
and used 80% of it for training and the rest for testing, then we
normalized our features, and fed them into the SVR module
to predict the MOS score. We repeated the process 50 times.
We obtained a median Pearsons linear correlation coefficient
(PLCC) of 0.73 and a Spearmans rank ordered correlation co-
efficient (SROCC) of 0.69 against MOS.

Table 3 compares the performances of various reported
algorithms. By using only 27 features, our correlation-
enhanced model was able to outperform the other leading
models, demonstrating the power of the bivariate features.
The performance of our model was only approached by
FRIQUEE, which uses a large number of features (more than
20× as many). Notably, the correlation features substantially
boosted the performance of simple BRISQUE [5]. A very
interesting extension will be to apply the model to temporal
pictures, as for example on video frame differences which
present highly regular statistical structures [25].

We also tested the performance of our model on the LIVE
IQA database [29]. The results are summarized in Table 4.
Our predictor also outperformed on this database too.

Furthermore, we performed the p statistical significance
test on the different groups of features used by our predictor
and we were able to verify that the features deliver statistically
significant superior performance. As an additional test, we re-

Table 3. Comparison of Image Quality Models on the LIVE
Challenge Database.

Number of Features PLCC SROCC
Bivariate Model 27 0.73 0.69
FRIQUEE [26] 584 0.72 0.72
BRISQUE [5] 36 0.61 0.60

C-DIVIINE [27] 82 0.66 0.63
DIVIINE [23] 88 0.56 0.51

BLIINDS-II [28] 24 0.45 0.48
NIQE [8] 36 0.48 0.42

Table 4. Comparison of Image Quality Models on the LIVE
IQA Database.

Number of Features PLCC SROCC
Bivariate Model 27 0.96 0.96
FRIQUEE [26] 584 0.93 0.95
BRISQUE [5] 36 0.94 0.94

C-DIVIINE [27] 82 0.94 0.95
DIVIINE [23] 88 0.93 0.92

BLIINDS-II [28] 24 0.92 0.91
NIQE [8] 36 0.92 0.91

moved each group of features in our predictor to understand
their individual contributions. Removing the BRISQUE de-
rived luminance based features had the greatest impact on per-
formance, followed by our bivariate NSS features. This is not
unexpected, because the univariate NSS model in BRISQUE
is complemented by our bivariate NSS correlation model.

5. CONCLUSION

We built a new predictor for the IQA problem by combining
quality-predictive features from a new bivariate NSS correla-
tion model with known BRISQUE univariate NSS features.
The resulting new IQA model was shown to outperform top
performing blind image quality assessment models. As a next
step, we plan to use those bivariate NSS features to build pre-
dictors to asses the quality of different modalities such as mil-
limeter wave, X-ray and infra red images.

6. REFERENCES

[1] S. Heyman, “Photos, photos everywhere,” New
York Times, Jul 2015. [Online]. Available:
https://www.nytimes.com/2015/07/23/arts/
international/photos-photos-everywhere.html

[2] J. Chen, Y. Zhang, L. Liang, S. Ma, R. Wang, and
W. Gao, “A no-reference blocking artifacts metric us-
ing selective gradient and plainness measures,” pp. 894–
897, 2008.

[3] S. A. Golestaneh and D. M. Chandler, “No-reference
quality assessment of JPEG images via a quality rele-
vance map,” IEEE Sign. Process. Lett., vol. 21, no. 2,
pp. 155–158, 2014.

1241



[4] R. Barland and A. Saadane, “Reference free quality
metric using a region-based attention model for JPEG-
2000 compressed images,” Electronic Imaging 2006, pp.
605 905–605 905, 2006.

[5] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-
reference image quality assessment in the spatial do-
main,” IEEE Trans. on Imag. Proc., vol. 21, no. 12, pp.
4695–4708, 2012.

[6] H. Tang, N. Joshi, and A. Kapoor, “Learning a blind
measure of perceptual image quality,” IEEE Conf. on
Comput. Vis. Patt. Rec., pp. 305–312, 2011.

[7] P. Ye and D. Doermann, “No-reference image quality
assessment using visual codebooks,” IEEE Trans. Imag.
Proc., vol. 21, no. 7, pp. 3129–3138, 2012.

[8] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making
a completely blind image quality analyzer,” IEEE Sign.
Process, Lett., vol. 20, no. 3, pp. 209–212, 2013.

[9] A. Saha and Q. M. J. Wu, “Utilizing image scales to-
wards totally training free blind image quality assess-
ment,” IEEE Trans. on Imag. Proc., vol. 24, no. 6, pp.
1879–1892, 2015.

[10] W. T. Freeman and E. H. Adelson, “The design and use
of steerable filters,” IEEE Trans. Pattern Anal. Machine
Intell., no. 9, pp. 891–906, 1991.

[11] Z. Sinno and A. C. Bovik, “On the natural statistics of
chromatic images,” Southw. Symp. Image Anal. Inter-
pret., Apr 2018.

[12] M. Clark and A. C. Bovik, “Experiments in segment-
ing texton patterns using localized spatial filters,” Patt.
Recog., vol. 22, no. 6, pp. 707–717, 1989.

[13] D. L. Ruderman and W. Bialek, “Statistics of natural
images: Scaling in the woods,” Phys. Rev. Lett., vol. 73,
no. 6, p. 814, 1994.

[14] A. B. Lee, D. Mumford, and J. Huang, “Occlusion mod-
els for natural images: A statistical study of a scale-
invariant dead leaves model,” Int. J. Comput. Vision,
vol. 41, no. 1-2, pp. 35–59, 2001.

[15] Z. Sinno, C. Caramanis, and A. C. Bovik, “Towards
a closed form second-order natural scene statistics
model,” IEEE Trans. Imag. Proc., in revision.

[16] Z. Sinno and A. C. Bovik, “Relating spatial and spectral
models of oriented bandpass natural images,” Southw.
Symp. Image Anal. Interpret., Mar 2016.

[17] Z. Sinno and A. C. Bovik, “Generalizing a closed-form
correlation model of oriented bandpass natural images,”
IEEE Glob. Conf. Sig. Info. Proc., Dec 2015.

[18] K. Sharifi and A. Leon-Garcia, “Estimation of shape pa-
rameter for generalized gaussian distributions in sub-
band decompositions of video,” IEEE Trans. on Circ.
Sys. Vid. Tech., vol. 5, no. 1, pp. 52–56, 1995.

[19] Z. Sinno, C. Bampis, and A. C. Bovik, “Detecting, lo-
calizing and correcting exposure-staurated regions using
a natural image statistics model,” Ann. Meet. of Vis. Sci.
Soc., 2017.

[20] N. E. Lasmar, Y. Stitou, and Y. Berthoumieu, “Multi-
scale skewed heavy tailed model for texture analysis,”
in Proc. IEEE Int. Conf. Imag. Process. IEEE, 2009,
pp. 2281–2284.

[21] D. Ghadiyaram and A. C. Bovik, “Massive online
crowdsourced study of subjective and objective picture
quality,” IEEE Trans. Image Process., vol. 25, no. 1, pp.
372–387, 2016.

[22] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L.
Bartlett, “New support vector algorithms,” Neur. Comp.,
vol. 12, no. 5, pp. 1207–1245, 2000.

[23] A. K. Moorthy and A. C. Bovik, “Blind image qual-
ity assessment: From natural scene statistics to percep-
tual quality,” Image Processing, IEEE Transactions on,
vol. 20, no. 12, pp. 3350–3364, 2011.

[24] C. C. Chang and C. J. Lin, “LIBSVM: A library for
support vector machines,” ACM Trans. Intell. Sys. Tech.
(TIST), vol. 2, no. 3, p. 27, 2011.

[25] H. R. Sheikh and A. C. Bovik, “A visual information
fidelity approach to video quality assessment,” First In-
tern. Worksh. Vid. Proc. Quall. Met. Cons. Electr., pp.
23–25, 2005.

[26] D. Ghadiyaram and A. C. Bovik, “Scene statistics of
authentically distorted images in perceptually relevant
color spaces for blind image quality assessment,” IEEE
Int. Conf. Imag. Process., pp. 3851–3855, 2015.

[27] Y. Zhang, A. K. Moorthy, D. M. Chandler, and A. C.
Bovik, “C-DIIVINE: No-reference image quality as-
sessment based on local magnitude and phase statistics
of natural scenes,” Sig. Proc.: Image Commun., vol. 29,
no. 7, pp. 725–747, 2014.

[28] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image
quality assessment: A natural scene statistics approach
in the dct domain,” IEEE Trans. on Imag. Proc., vol. 21,
no. 8, pp. 3339–3352, 2012.

[29] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Im-
age quality assessment: from error visibility to struc-
tural similarity,” IEEE Trans. Image Processing, vol. 13,
no. 4, pp. 600–612, Apr 2004.

1242


