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ABSTRACT

Single-image super-resolution (SISR) is a very important and
classic problem of the computer vision community. Although
a lot of SISR methods have been proposed, few studies have
been conducted to address the quality assessment of SISR
methods. In this paper, we proposed a deep learning based
no-reference image quality assessment (NR-IQA) model for
SISR. We took small patches from images to form our train-
ing set and labeled them with different scores. With the aid of
well-designed architecture and training strategy, our method
achieved a performance leap than state-of-the-art methods.
Experimental results proved the generalizability and the ef-
fectiveness of the proposed model.

Index Terms— Quality assessment, Super-resolution,
Convolutional neural network, Deep learning, No-reference

1. INTRODUCTION

Single-image super-resolution (SISR) algorithms aim to re-
store a high-resolution (HR) image from a low-resolution
(LR) one. Until now, there have been numerous SISR meth-
ods proposed in the literature. But they always use peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [1] as the evaluation metric, which have been de-
signed for image degradation. In SISR benchmark study [2],
such as PSNR and SSIM are proved to have lower consistency
with human visual system (HVS). So, it is very important to
develop a specific quality assessment method for SISR.
Information fidelity criterion (IFC) [3] is proved to have
better consistency with HVS in the SISR benchmark study
[2]. However, since it is a full-reference metric, reference im-
ages is not always available for the images to be tested in the
practical application. Therefore, developing a no-reference
image quality assessment (NR-IQA) for SISR has a strong
practical significance. Although there have been many NR-
IQA methods [4, 5, 6, 7, 8, 9], they are not specially designed
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for SISR. Generic NR-IQA methods are designed based on
image signal and noise, while quality assessment of SISR
should be designed based on visual perception.

In [10], Ma et al. firstly addressed the NR-IQA of SISR
methods with a two-stage regression model. More impor-
tantly, they built a database for quality assessment of SISR
methods. They chose 30 images from Berkeley segmenta-
tion dataset (BSD) [11] and processed them with nine differ-
ent SISR methods [12, 13, 14, 15, 16, 17, 18] at six different
settings. Hence, their database has 1620 images with subjec-
tive scores. With the aid of this database and well-designed
138 hand-crafted features, their two-stage regression method
achieved state-of-the-art performance. In spite of its good per-
formance, it is time costing because of the 138 hand-crafted
features. In recent years, deep learning technique plays dom-
inant role in the computer vision field, especially convolu-
tional neural networks (CNNs). CNNs based methods have
better performance without hand-crafted features. To the best
of our knowledge, there is no CNNs-based NR-IQA method
for SISR proposed yet. Therefore, these reasons motivate us
to develop a CNNs-based NR-IQA method for SISR.

In this paper, we proposed a deep learning based NR-IQA
for SISR. The main contributions of our work lie in two as-
pects:

1) We proposed a deep CNNs model for no-reference qual-
ity assessment of SISR metrics. Inspired by the successful
models used for image classification, we designed a spe-
cific NR-IQA model for SISR.

2) Since our proposed model is a patch-wise model, we de-
signed a label distribution method. So, each of the patches
in the training set has different labels. This method im-
proves the performance of the proposed model.

The rest of the paper is organized as follows. In Section
2, we describe our proposed model. Then we present exper-
imental results and discuss the properties of proposed deep
CNNs model in Section 3. Finally, we draw conclusions in
Section 4.
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Fig. 1. Network architecture of the proposed model. Our network consists of six convolutional layers, two max pooling layer,
three skip connections, and two fully connected (FC) layers. The output of the second FC layer is the predicted quality score of
the input image patch. The overall quality score of the input image is the average sum of the predicted score of small patches.

2. PROPOSED METHOD

In this section, we first introduce the proposed model. Then,
we introduce the network configuration and each of the used
layers. Finally, we introduce the data preparing method of
our proposed model, especially the proposed label distribu-
tion method.

2.1. Proposed model

We present an accurate deep CNNs model for NR-IQA of
SISR. For an input image, we split it to multiple 32 x 32
small patches without overlaps at first. Then our proposed
model predict quality scores for each small patch. At the end,
the final quality score of the input image is the average sum of
the quality score of small patches. The network architecture
of our model is shown in Fig.1. As shown in this figure, our
model consists of six convolutional layers with taking recti-
fied linear unit (ReLU) as activation function, two fully con-
nected layers and two max pooling layers. It is worth noting
that we add three skip connections to our network inspired by
deep residual network [19].

2.2. Layers

The network configuration is listed in Table 1. Our model has
six convolutional layers to extract local features. The filter
size of convolutional layers is fixed to 3 x 3. When the fea-
ture map size is reduced to half, we increase the filter number
to twice of the previous one. Each convolutional layer takes
ReLU as activation function. Denote C; as the feature map
of the j'" layer, W; and B, as the weight and bias of the j*
layer, then the local information is extracted into deeper lay-
ers by Eq.(1), where * denotes the calculation of convolution.
We set the bias B, to zero in our model.

Cj+1 = maX(O, Wj * Cj + BJ) M

In order to reduce the complexity and computation cost,
we add pooling layers to our model. We employed max pool-
ing with 2 x 2 window size. So after the pooling layer, the
feature map size is reduced to half. The max pooling is ap-
plied as Eq.(2), where R is the pooling region of correspond-
ing feature map.

Cj+1 = m}gx Cj (2)

In order to easily converge and prevent gradient descent,
we add three skip connections to our method. As revealed
in [19], skip connection is a very effective way to train deep
CNNs model. The first and second skip connections add the
outputs of the previous convolutional layers and send them to
the max pooling layer. Similarly, the third skip connection
adds the outputs of the 5*" and 6" convolutional layers and
send them to the first fully connected layer. The second fully
connected layer outputs the predicted value. The image score
is predicted by minimizing the following Euclidean loss,

min [[F(X W) - V| G)

where X and Y denote the input image patch and its label
respectively and f(X; W) be the predicted score of X with
network weights W.

Stochastic gradient decent (SGD) and back-propagation
are used to solve the parameters W in Eq.(3) that minimizes
the distance between predicted quality score and ground truth.

Ajpr=m-A;—1

oL
oW
“)
Wiy =W + Ay = W]
where m is the momentum factor, 7 is the learning rate,
j is the index of the layer, A;; is the gradient increment for
training iteration ¢, and A is the weight decay factor. Mo-
mentum factor and weight decay factor were fixed to 0.9 and
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0.0005 respectively in our model training. Learning rate is set
to different values ranges from 0.01 to 0.00001 at different
epoches.

2.3. Data preparing

For the images in training and testing sets, we pre-process
them using the same method in previous works [4, 6]. For
an image, we compute locally normalized luminances via lo-
cal mean subtraction and divisive normalization. This is bea-
cause applying a local non-linear operation to log-contrast lu-
minances to remove local mean displacements from zero log-
contrast and to normalize the local variance of the log-contrast
has a decorrelating effect [4]. This pre-processing operation
can be formulated as:

j(l,]) — I(Zvj> _ IU’(Z’])7

o(i,j)+C

where 1(i, j) denotes the normalized image, (i, j) denotes
the input image, p(4,j) denotes the mean value, o(i,7) de-
notes the contrast value, and C'is a constant value preventing
the denominator to be zero. In our method, we set C' = 1.
The mean value (7, j) and the contrast value o (4, j) can be
formulated as:

®

p=P ¢=Q
pi )= I(i+p,j+q), (6)
p=—Pq=—Q
p=P q¢q=Q
o(i, )= Y, Y. Uli+pi+aq) —uli,i)?
p=—Pq¢=—Q

where w = wp,qlp=—P,..,P,g=—@Q,...Q is a 2D
circularly-symmetric Gaussian weighting function sampled
out to 7/6 standard deviations and rescaled to unit volume.
In our implementation, P = Q = 7.

After pre-processing, we split an image to small patches.
We took 32 x 32 sized patches from images with stride 32. So,
the small patches taken from an image have no overlapping
region. In training, due to the database just has the whole
image’s label, we design a label distribution method for the
small patches, which are taken from a same image. The label
distribution method can be formulated as:

MSEP - MSEaverage
|MSEP - MSE(werage |ma1‘

Sp = Simage + *Simagea (8)

where S, denotes the label score of small patches;
Simage denotes the label score of a whole image; MSE,
denotes the mean squared error between small patches and
the corresponding small patches from original image, and
MSEqyerage denotes the average value of M SE, from an
image. Then, we normalize all the labels between 0 and 1.
After label distribution procedure, we can begin our training
procedure. This will detailed in the next section.

Table 1. Configuration of our deep CNNs model

Layer name | Padding | Filter size | Stride |  Output size
input | | | | 32x32x3
convl / ReLU | 1 ] 3x3 | 1 | 32x32x64
conv2 / ReLU | 1 | 3x3 | 1 |32x32x64
skip connections 1 | | | | 32 x32x64
max pooling 1 | | 2x2 | 2 | 16x16x64
conv3 / ReLU | 1 ] 3x3 | 1 |16x16x128
conv4 / ReLU | 1 | 3x3 | 1 | 16x16x128
skip connections 2 | | | | 16 x 16 x 128
max pooling2 | | 2x2 | 2 |8x8x128
conv5 / ReLU | 1 | 3x3 | 1 |8x8x256
conv6 / ReLU | 1 | 3x3 | 1 |8x8x256
skip connections 3 ‘ ‘ ‘ ‘ 8 X 8 x 256
fcl \ \ \ | 1024
fc2 | | IE

3. EXPERIMENT

In this section, we demonstrate experiments to validate the
effectiveness of the proposed model. We first introduce the
dataset and the evaluation method. Then, we introduce the
training details. Moreover, we demonstrate the experimental
results. In the end, we discuss the experimental results.

3.1. Dataset

In [10], Ma et al. built a dataset for quality assessment of
SISR. We used this dataset to train and test our model. This
dataset took 30 images from Berkeley segmentation dataset
and processed them with 9 different methods at 6 different
settings. These 9 different methods are : bicubic interpolation
(Bicubic), back projection (BP) [20], Shan08 [12], Glasner09
[13], YanglO [14], Dongl1 [15], Yangl3 [16], Timoftel3
[17], and SRCNN [18]. And 6 different settings are down-
sample factors s € {2,3,4,5,6,8} with corresponding ker-
nel width factors o € {0.8,1.0,1.2,1.6,1.8,2.0}. Thus this
dataset has 1620 images with subjective perceptual scores.

Following the experimental settings in [10], we used
spearman rank correlation coefficients (SROCC) value to
measure the correlation between subjective scores and the
predicted objective scores. SROCC measures how well one
quantity can be described as a monotonic function of another
quantity.

3.2. Training details

We apply deep learning toolbox Matconvnet [21] to train the
deep CNNs model for NR-IQA of SISR methods. The SISR
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Table 2. Mean SROCC value comparison with state-of-the-arts.

Bicubic Bp Shan08 Glasner09 YanglO Dongll Yangl3 Timoftel3 SRCNN Overall
PSNR 0572 0.620 0.564 0.605 0.625 0.634 0.631 0.620 0.645 0.604
FSIM 0.706  0.770  0.648 0.778 0.757 0.765 0.768 0.756 0.780 0.747
SSIM 0.588  0.657  0.560 0.648 0.649 0.649 0.652 0.656 0.660 0.635
IFC 0.884  0.880 0.934 0.890 0.866 0.865 0.870 0.881 0.885 0.810
BIQI 0.770  0.740  0.254 0.523 0.556 0.236 0.646 0.563 0.617 0.482
DIVINE 0.784  0.842  0.653 0.426 0.525 0.763 0.537 0.122 0.625 0.589
CNNIQA 0926 0956 0.832 0.914 0.943 0.921 0.927 0.924 0.908 0.904
CORNIA 0.889  0.932  0.907 0.918 0.908 0912 0.923 0.911 0.898 0.919
BLIINDS 0.886  0.931  0.664 0.862 0.901 0.811 0.864 0.903 0.843 0.853
BRISQUE 0.850 0917  0.667 0.738 0.886 0.783 0.784 0.843 0.812 0.802
Ma et al. 0933 0966 0.891 0.931 0.968 0.954 0.958 0.930 0.949 0.931
Ours without label distribution ~ 0.961 ~ 0.965  0.919 0.946 0.960 0.934 0.954 0.920 0.941 0.947
Ours with label distribution 0973 0977 0.926 0.950 0.971 0.955 0.971 0.934 0.953 0.958

quality assessment dataset [10] is used to train and test our
model. At the training stage, we first extract 32 x 32 patches
with stride 32 from the images in the SISR quality assessment
dataset. Since different image patches have different quality
values, we used the proposed label distribution method to la-
bel them with different values. Then we train our model with
different learning rates. Learning rate is changed to 1/10 of
the previous one at the interval of ten epoch. It varies from
0.01 to 0.00001. In order to control the gradient at specified
range, we set gradient clip value to a fixed value 0.1. Fi-
nally, our deep CNNs model is obtained by training after 40
epoches. It took 40 minutes to train a model with GTX1070
GPU. The experimental results are demonstrated in the next
subsections.

3.3. Experimental results

Following experimental settings in [10], we adopt 5-fold val-
idation to test our model. In the test phase, we randomly split
the dataset to 5 folds. Then, we select 4 folds to form training
set and the remaining one fold be the testing set. We con-
tinue this process until each fold is selected as a testing set for
one time. After 5 iterations, we can get the predicted quality
score of each image in dataset. For fair comparison with other
methods, we run 5-fold test 50 times and demonstrate mean
value of 50 tests’ results.

We compare our methods with some generic full-reference
image quality assessment methods: PSNR, SSIM [1], IFC [3],
and feature similariy index (FSIM) [22]; and some generic
NR-IQA methods: BIQI [8], DIVINE [9], CNNIQA [6],
CORNIA [5], BLIINDS [7], and BRISQUE [4]; and one spe-
cific SISR quality assessment methods: Ma et al. [10]. Other
methods’ results are reported in [10]. For fair comparison,
we took the results of NR-IQA methods with training on the
same dataset. We compare our results with other methods on
overall SROCC value and the seperate SROCC value on each
different SISR methods in the dataset.

The experimental results are displayed in Table 2. In order

to highlight the proposed label distribution method, we also
present the proposed model results without it. Namely, label
each patches from same image with the image’s perceptual
score.

3.4. Discussion

As we can see from the results in Table 2, our proposed model
outperformed other methods in overall comparison. This
proved the superiority of the proposed model. Our model
possesses strong representation ability with the wider filter
number at small scales. Even though training with same patch
score, our model outperformed other compared methods on
overall SROCC value comparison. With the aid of the pro-
posed label distribution method, performance of our method
is further improved. In each different method comparison,
our proposed method also outperformed other methods. This
confirmed the generalization ability of our method. Overall,
our proposed deep CNNs model has state-of-the-art perfor-
mance. It is worth noting that the proposed model is easy to
use and train, because it does not need hand-crafted features.
For an input image, after pre-processing, we can input it to
the proposed CNNs model and get the quality score of this
image.

4. CONCLUSION

In this paper, we proposed a deep learning based no-reference
image quality assessment method for single image super reso-
Iution. We designed a convolutional neural networks architec-
ture for the no-reference quality assessment of single image
super resolution. By applying the proposed label distribution
method, our proposed model achieved promising results. Ex-
perimental results verified the superiority of our method and
confirmed that our method achieved a performance leap com-
pared to state-of-the-arts.
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