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ABSTRACT 

 

The full-reference image quality assessment (IQA) method 

are limited in practical applications. Here we propose a no-

reference quality assessment method for high dynamic range 

(HDR) images based on tensor space. First, the tensor 

decomposition is used to generate three feature maps of an 

HDR image, considering color and structure information of 

the HDR image. Second, for a given HDR image, the 

corresponding multi-scale manifold structure features are 

extracted from the first feature map. For the second and third 

feature maps of the HDR image, multi-scale contrast 

features are extracted. Finally, the extracted features are 

aggregated by support vector regression to obtain the 

objective quality score of the HDR image. Experimental 

results show that the proposed method is superior to some 

representative full and no-reference methods, and even 

superior to the full-reference HDR IQA method, HDR-VDP-

2.2, on the Nantes database. The proposed method has a 

higher consistency with human visual perception. 

 

Index Terms—No-reference, high dynamic range, 

image quality assessment, tensor space, feature maps 

 

1. INTRODUCTION 

 

With the rapid development of optical imaging and data-

processing technologies, there has been growing interest in 

high-dynamic-range (HDR) images in recent years. Unlike 

traditional low-dynamic-range (LDR) scenes, the luminance 

levels in HDR scenes can range from 1010:1 [1]. HDR 

achieves a more complete representation of the luminance 

variations in real scenes that the human eye can see, ranging 

from direct sunlight to faint starlight in real scenes. Hence, 

there is a better contrast distribution in HDR images than in 

LDR images, which leads to a higher degree of detail 

preservation. 

Similar to LDR images, HDR images can be distorted 

when they are acquired, processed, compressed, and 
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transmitted; these distortions may affect the visual effects of 

HDR images. Therefore, quality assessment of HDR 

image/video systems, in terms of quality of experience, is an 

essential issue. Although subjective evaluation can better 

reflect human visual experience, it is time consuming and 

difficult to embed into an actual system. Thus, objective 

quality assessment tools are needed. Objective quality 

assessment methods can be classified into three categories: 

full-reference (FR) methods, which compare the test image 

with a reference image; reduced-reference (RR) methods, 

which use part of the information from the reference image; 

and no-reference (NR) methods, which do not use any 

information about the reference image. In this study, only 

FR and NR methods are considered. Over the past several 

decades, research on LDR image quality assessment (IQA) 

has made remarkable progress. However, LDR IQA methods 

are designed for gamma encoded images, typically with 

luminance values in the range 0.1–100 cd/m2, while HDR 

images have linear values and are meant to capture a much 

wider range of luminance. Obviously, LDR IQA methods 

cannot be directly applied in HDR IQA tasks well [2]. And 

currently, there is still a lack of an effective NR method of 

evaluating HDR images, but, in practical applications, NR 

IQA is the only realistic option for HDR systems. Thus, NR 

HDR IQA is an urgent problem to solve. 

In this paper, a new NR HDR IQA method is proposed 

based on tensor space, in which the HDR image with color 

information is represented as a third-order tensor, and the 

HDR image quality is blindly assessed in tensor space by 

extracting the multi-scale manifold structure features and 

visual contrast.  

The rest of the paper is organized as follows. In Section 

2, we introduce the tensor space of a HDR image, and in 

Section 3 we describe the proposed NR HDR IQA method. 

The experimental results are discussed in Section 4, and the 

conclusions are given in Section 5. 

 

2. TENSOR SPACE 

 

For high-dimensional data, the classical data-processing 

approach is to transform it into a vector, which will lead to 

the dimensions of the data samples to be too high and 

destroy the structure of the data. To solve this problem, a 
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tensor can be used. In this section, we discuss how to use the 

tensor decomposition to analyze the feature representation of 

HDR images.  

Assuming that a HDR image contains three channels 

and the size of each channel image is M×N, the HDR image 

can then be represented by a third-order tensor I of the size 

M×N×3.  The Tucker3 decomposition [3] of the HDR image 

I is defined as follows. 

 
(1) (2) (3) (3)

1 2 3 3 ,     U U U UI          (1) 

where ξ is the core tensor with the same order and dimension 

as I, (1) (2)

2  U U  , U(1), U(2), and U(3) are orthogonal 

matrices of sizes M×M, N×N, and 3×3, respectively.  

The i-th channel matrix of size M×N of the core tensor 

is denoted by θi (1i3), and by the formula (1), the t-

channel of the HDR image can be expressed as a linear 

combination of θi. 
3
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From the above equation, it is found that each channel 

image of the HDR image is a linear combination of {θi 

|i=1,2,3}, and each row of the orthogonal matrix U(3) 

represents the correlation coefficient between each channel 

image. Here, {θi |i=1,2,3} represents a set of feature maps. 

In addition, the energy of the HDR image I is the sum of the 

energy of each feature map {θi |i=1,2,3}. 
3
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where   represents the Frobenius norm. 

According to (3) and its corresponding SVD, we have 

 
2 2 2

1 2 3 , θ θ θ                     (4) 

It can be seen from (3) and (4) that the energy of a HDR 

image is distributed between its feature maps in descending 

order from the first to the last feature map. Here, we call θ1 

the first feature map, θ2 the second feature map and θ3 the 

third feature map. Since {θi |i=1,2,3} are matrices of three 

channels of the sub-tensor, after we obtain the matrix U(3), 

the sub-tensor can be obtained by tensor multiplication. 

 

 (3)
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Here, ξ is the sub-tensor we must discuss. Specifically, the 

first feature map contains the main energy of three channels, 

the feature maps {θi |i=1,2,3} reflect the change of the HDR 

image along three channels, and these three feature maps are 

collectively called tensor space. 

 

3. PROPOSED NR HDR IMAGE QUALITY 

ASSESSMENT METHOD 

Based on the tensor decomposition, three feature maps are 

generated, and two complementary types of features are 

separately extracted from the feature maps in tensor space to 

form a feature set that is predictive of the perceived quality. 

More concretely, the color HDR image is represented by the 

third-order tensor, and the three feature maps are obtained 

by tensor decomposition. The first type is a multi-scale 

manifold structure feature derived by manifold learning from 

the first feature map. The second type belongs to a multi-

scale perceived detail contrast feature derived from the 

second and third feature maps. Finally, a SVR technique is 

adopted to fuse all the above features into their 

corresponding subjective scores. We elaborate on each 

component in detail in the following. 

 

3.1. Extraction of multi-scale manifold structure feature 

in a HDR image 

 

3.1.1. The establishment of the best projection matrix 

 Constructing training sample set: For each selected 

training set, the first feature maps are obtained from the 

training images by the tensor decomposition. From the 

first feature maps, 20000 image blocks of size 8×8 are 

selected randomly, and each image block is transformed 

into a column vector, thereby obtaining a column vector 

with a length of 64. All column vectors generated from 

image blocks form a training sample matrix X. 

 PCA processing: Studies have shown that the retina and 

lateral geniculate nucleus (LGN) will whiten the input 

visual signal [4]. Therefore, in order to simulate the 

function of the retina and LGN, we use the PCA 

algorithm to reduce the dimension of the training 

sample matrix and whiten it. Here, the PCA process is 

realized by eigenvalue decomposition of the covariance 

matrix; the training sample matrix after whitening is 

denoted Xw. 

 Best projection matrix: After whitening of the training 

sample matrix, the best projection matrix W is 

calculated by the orthogonal locality-preserving 

projection (OLPP) algorithm of manifold learning. The 

specific process of the algorithm is shown in [5]. Here, 

W can be used to extract the manifold feature of image 

blocks. 

 

3.1.2 Extraction of manifold structure feature matrix 

To estimate the quality of a HDR image, the first feature 

map of the test image is divided into a plurality of 88 non-

overlapping image blocks, while each image block subtracts  

 

,k k d W y                 (6) 

Finally, the manifold structure feature matrix D of the test 

HDR image Y is generated as follows. 

 1 2, ,..., .kD d d d                      (7) 
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(a) An HDR image                          (b) Histogram distribution 

Fig.1. Statistical histogram and GGD fitting curve of the 

manifold feature matrix. 

 

 
Fig.2. Block diagram of multi-scale manifold structure 

feature extraction. 

 

3.1.3 Extraction of multi-scale manifold structure features 

Here, the histogram of the manifold feature matrix D is fitted 

through the generalized Gaussian distribution (GGD) model 

to describe the manifold structure feature of a HDR image. 

Fig. 1 gives a concrete example, i.e., a test HDR image with 

its corresponding histogram distribution and GGD fitting 

curve. The density function of the GGD is defined as follows. 
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
  
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 (8) 

where ( )   is a gamma function computed by 

 

1

0
( ) , 0,x tx t e dt x


      (9) 

where μ is the mean of the intensity of the image blocks, α 

the shape parameter, and β the scale parameter. As effective 

quality-aware features, μ, α, and β are used to characterize 

the manifold feature of the HDR image. 

At the same time, due to the fact that a multi-scale 

operation can better reflect the details of a HDR image, here 

the first feature map θ1 is down-sampled four times by 1/2, 

and five resolution feature maps are obtained. For each 

feature map of different scales, the same processing is used 

to obtain a total of five sets of GGD fitting parameters 

fi=(μi,αi,βi) (i=1,2…,5) as shown in Fig. 2. fi represents the 

manifold structure feature of an ith scale HDR image. Thus, 

the final multi-scale manifold structure features set of the 

HDR image is produced as follows. 

 

1 2 3 4 5[ , , , , ],MS f f f f f f           (10) 

where the dimension of fMS is15(3×5=15).  

3.2. Extraction of perceived detail contrast feature in 

HDR image 

 

Rich detail information and good contrast information can 

give people a better visual experience. According to the 

properties of the tensor decomposition, the second and third 

feature maps contain less structural information than the first 

feature map, which mainly shows the details and the contrast 

information of the original HDR image. 

However, the standard deviation can reflect the 

dispersion degree of data, which can be used to measure 

contrast distortions of an image. Here, as complementary 

feature, we use the standard deviation as an estimate of the 

perceived detail contrast. Specifically, the second and third 

feature maps are first divided into multiple image blocks 

using an 88 non-overlapping sliding window, and then the 

standard deviation of each image block is calculated using 

the following equations. Finally, the mean of the standard 

deviation of all image blocks is taken as the final standard 

deviation. The standard deviation computational formula is 
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where p represents the number of pixels in each image block, 

P is the total number of blocks, and x is the mean intensity 

of the pixels. 

Similarly, for the five scales corresponding to the 

feature maps θ2 and θ3, five sets of standard deviations 

fi+5=(σθ2(i),σθ3(i)) (i=1,2…,5) are obtained. Thus, the multi-

scale perceived detail contrast feature set is produced as 

follows. 

 

6 7 8 9 10[ , , , , ].PC  f f f f ff                    (13) 

3.3. Quality assessment 

 

Combining the manifold feature set fMS in the first feature 

map and the perceived detail contrast feature set fPC in the 

second and third feature maps, the perceived quality feature 

set f of a HDR image in our method is obtained as follows. 

 

[ , ].MS PCf f f                   (14) 

 

where the dimension of the feature set is 25 (3×5+2×5=25). 

In this paper, the features extracted in the tensor space are 

used as the HDR-image-quality-aware features, and the SVR 

technique is used to establish the quality assessment model 

to blindly evaluate the HDR image quality. 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1. Databases and training sets 

 

The validity of the algorithm was tested and compared in 

these two public HDR image databases. One of the 

databases is provided by Nantes University [6] and the other 

is based on the JPEG XT standard and is provided by the 

EPFL Laboratory [7]. Each database contains reference 

images and a series of distorted images. Each image gives 

the corresponding MOS values. 

Since the best projection matrix is obtained through 

training, the training images must be selected. In order to 

eliminate the influence of the training process on the 

accuracy of the features extracted, the storage type of the 

manifold training images should be same as that of the test 

images because the data with different storage methods of 

HDR images differ greatly. In order to avoid overlapping of 

training images and test images, and to prove the 

effectiveness of the method, 10 non-distorted HDR images 

selected from the DML-HDR image set [8, 9] are used as 

training image set S1 for quality assessment of HDR images 

with “.hdr” format in Nantes database; for the EPFL 

database with images of “.pfm” format, we randomly 

selected 10 non-distorted HDR images from the EPFL 

database to form the training image set S2, and the 

remaining images in EPFL database were used for testing. 

 

4.2. Performance indexes 

 

According to the relevant process of the video quality 

experts group (VQEG) [10], the output value Q of the model 

is nonlinearly fitted with five parameter logistical functions 

to obtain the prediction MOSp, which is computed by 

 

  1 4 5

2 3

1 1
= .

2 1 exp
pMOS Q

Q
  

 

 
   

   

        (15) 

where λ1, λ2, λ3, λ4, and λ5 are the model adjustment 

parameters. 

The experimental results are given by three commonly 

used performance evaluation indexes: the Pearson linear 

correlation coefficient (PLCC), Spearman rank order 

correlation coefficient (SROCC), and the root-mean-square 

error (RMSE). A better objective method should have higher 

PLCC and SROCC values and lower RMSE values. 

 

4.3. Performance comparison 

 

Owing to the lack of NR HDR IQA methods, in this 

subsection we compare the proposed method to four 

representative IQA methods including two FR LDR methods 

(MSE and SSIM [11]), a NR LDR method (DIIVINE [12]), 

and a FR HDR method (HDR-VDP-2.2 [13]) for HDR 

images. Because it is unreasonable to evaluate HDR images  

Table 1. Performance comparison of different assessment 

methods. 

Metho

-ds 
Indexes 

PU-

MSE 

PU-

SSIM 

PU-

DIIVI-

NE 

HDR-

VDP-

2.2 

Propos-

ed 

Nantes 

PLCC 0.4471 0.6056 0.2613 0.7329 0.9269 

SROCC 0.4197 0.6528 0.2271 0.7047 0.9153 

RMSE 0.9019 0.8006 0.9712 0.6485 0.3671 

EFPL 

PLCC 0.8241 0.9178 0.5892 0.9500 0.9015 

SROCC 0.8385 0.9191 0.5081 0.9419 0.8740 

RMSE 0.6798 0.4750 0.9668 0.3736 0.5016 

 

directly by traditional LDR IQA methods, so we first 

transform HDR images to a perceptually uniform (PU) space 

[14], then the LDR methods were computed in the PU space. 

It is worth mentioning that the HDR-VDP-2.2 method is 

considered the state-of-the-art FR HDR IQA method. 

Table1 lists the performance indexes for each 

evaluation method computed on the two databases. Two sets 

of the best performance indexes in the table are emboldened. 

As can be seen from table 1, the performances of the 

proposed method achieved good results. First, in the Nantes 

image database, our method is optimal, not just far superior 

to the traditional FR and NR methods, and even better than 

the FR HDR IQA method (that is, HDR-VDP-2.2). Second, 

on the EPFL image database, the proposed method is not the 

best, but like the NR HDR IQA method, its performance is 

closest to the representative HDR IQA method (HDR-VDP-

2.2). Compared to the typical LDR NR method DIIVINE, 

the advantages of the proposed method are very obvious. 

Meanwhile, the performance of the proposed method is 

relatively stable. In contrast, the evaluation results using 

other methods, even HDR-VDP-2.2, are not stable. 

Therefore, compared to other methods, the predictive results 

of the proposed method are closer to that of the subjective 

evaluation and the performance is stable.  

 

5. CONCLUSIONS 

 

Based on the tensor space of a HDR image and a 

combination of the HDR image color feature, manifold 

structure feature, and perceived detail contrast feature, a new 

NR HDR IQA method was proposed. First, three feature 

maps were obtained by tensor decomposition. The three 

feature maps contain information such as the structure, detail, 

and color of the original HDR image. The three feature maps 

were then extracted with different features. In contrast to the 

traditional image feature extracted in the gray domain, we 

achieved an effective feature extraction in the tensor space 

of the HDR image. The experimental results show that the 

proposed method is highly consistent with human visual 

perception. On the basis of this research, our future work 

will be focused on developing more efficient feature 

extraction methods and concentrating on HDR video quality 

assessment. 
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