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ABSTRACT

We propose a rate-distortion optimized framework for esti-
mating illumination changes (lighting variations, fade in/out
effects) in a highly scalable coding system. Illumination
variations are realized using multiplicative factors in the im-
age domain and are estimated considering the coding cost
of the illumination field and input frames which are first
subject to a temporal Lifting-based Illumination Adaptive
Transform (LIAT). The coding cost is modelled by an `1-
norm optimization problem which is derived to approximate
a quadratic-log function which emerges from rate-distortion
considerations. The optimization problem is solved using
ADMM. The proposed solution works the same or better
than a mesh-based approach proposed in prior work, where
sparsity was controlled by explicitly choosing mesh parame-
ters. In the compression-inspired formulation presented here,
sparsity is discovered automatically through the solution of a
convex program that depends only on a target rate-distortion
operating point.

Index Terms— Wavelet-based coding, Illumination estimation,
R-D optimization, Scalable video coding.

1. INTRODUCTION

Video compression techniques achieve compression efficiency by
compensating for the temporal variations that occur between frames.
In such schemes the current frame is predicted using a reference
frame and the difference between the current frame and the pre-
diction is coded as the residual. For sequences with illumination
variations due to lighting changes or fade in/out effects, illumination
compensation is essential in reducing the residual signal.

Weighted prediction methods are used in H.264 [1] and HEVC
[2] standards to compensate temporal illumination changes in order
to enhance the coding efficiency. Illumination compensation in the
context of compression has been mostly studied using a scale and
offset applied to a reference frame f0 to predict the target frame f1
by f̃1 = αf0 + β [1–4]. The scale (α) and offset (β) parameters
are typically spatially slow varying and estimated using block-based
models providing a piecewise constant representation of the illumi-
nation variation. Although the β term forms part of the illumination
model, it need not be separately coded, since it is an additive term in
the image domain which can simply be folded into the coded resid-
ual information.

Block-based strategies can produce abrupt and visually-annoying
changes in illumination across block boundaries [5]. Moreover,

block-based coding approaches are less amenable to highly scalable
coding schemes [6].

In our previous work [4] we proposed a scalable coding frame-
work that utilizes a lifting-based illumination adaptive transform
(LIAT) to exploit inter-frame redundancy in the presence of illumi-
nation variations. A spatially affine mesh-based model replaced the
block-based models, enabling a spatially smooth description of illu-
mination change. Importantly, we showed that the inclusion of an
update step in addition to the predict step in the temporal transform
schemes for illumination compensation can markedly improve the
coding efficiency of conventional predict only schemes.

In our prior work [4] the illumination field was defined using a
fixed size mesh, limiting the illumination representation to the same
sparsity over the whole frame. Furthermore, the optimal mesh size
had to be discovered by searching through a range of plausible sizes
and noting the corresponding rate-distortion (R-D) performance. In
this work we address these limitations while retaining the highly
scalable nature of the coding framework.

We also note that alternative coding schemes [7–9] that use
blocks to perform spatially varying illumination compensation, es-
timate the block-based illumination parameters in a manner that is
greedy from a R-D optimization perspective. That is illumination
parameters are determined by taking into consideration the R-D im-
pact on the current block and its causal neighbours. The impact on
future blocks that are yet to be coded is not considered and therefore
only a sub-optimal solution can be reached. In contrast, in this work
we estimate the illumination model parameters by solving a convex
program that finds a globally optimum R-D operating point.

In a compression framework, both the illumination field and the
texture information are subject to a spatial transform prior to coding;
therefore we formulate a model for coding cost in the transform do-
main. Modelling the problem in the transform domain also resolves
the need to explicitly deal with the offset value β for illumination
compensation since the offset term becomes part of the coding cost
of the residue component. While we provide R-D coding results, our
emphasis is to illustrate that the proposed compression inspired con-
vex formulation can effectively distribute information in a sequence
between coded multiplicative illumination terms and texture data.

Since our proposed framework uses temporal and spatial wavelet
transform, it naturally endows spatio-temporal scalability. In addi-
tion, the wavelet subband coefficients are subject to embedded block
coding as defined by the EBCOT algorithm of JPEG 2000 [10],
thereby ensuring rate or quality scalability.

It should be noted that this work primarily focuses on applica-
tions with considerable illumination variation among frames. For
our study here, global motion is compensated as a preprocessing step
to illumination compensation. Apart from this, we do not consider
motion at all in this work, so that any local scene motion remains un-
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Fig. 1. The lifting-based illumination adaptive temporal transform

compensated in our experiments. This is not a necessary restriction
of our approach, but allows us to focus exclusively on the problem of
illumination compensation. The proposed approach is suitable as-is
for applications in low frame rate surveillance videos.

2. LIFTING-BASED ILLUMINATION ADAPTIVE
TRANSFORM

The Lifting-based Illumination Adaptive Transform (LIAT) frame-
work proposed in our previous work [4] applies a t+2D approach
where an illumination adaptive temporal subband transform is first
applied to the input frames, followed by a 2D spatial wavelet trans-
form on the resulting temporal subbands and the illumination field.
Consider a pair of frames f0 and f1, and an estimated illumina-
tion variation parameter α; the predict and update steps in the LIAT
framework [4] can be written as

h(α) = f1 − αf0, l(α) = f0 + b h(α) (1)

Here, the update factor b is chosen such that the temporal synthesis
gain is minimized [11] and as explained in [4] the distortion mini-
mizing choice for this case is b = α

1+α2 . The LIAT framework for
two levels of temporal decomposition is illustrated in Fig. 1. Illumi-
nation fields (α0→1, α0→2, and α2→3) and temporal subband frames
(l(2)0 , h(1)

0 , h(2)
0 , h(1)

1 ) undergo spatial wavelet decomposition and
embedded block coding to generate highly scalable codestreams for
both texture and illumination information.

3. R-D OPTIMIZED ILLUMINATION ESTIMATION IN
LIAT FRAMEWORK

According to (1) we have three components to code after applying
the LIAT; the illumination field (α), the temporal high pass (h) and
low pass (l) subband frames. For convenience we refer to them as
LIAT subband frames and denote all of them by s. We also use A
to indicate the spatial analysis linear operator (i.e. wavelet trans-
form) which is used to transform subband frame s into a collection
of spatial subbands for coding such that ys = A(s). The coding
of these spatial subbands contributes to the total distortion (D) of
reconstructed frames in the image domain and overall coded length
(L). The R-D optimality condition in the encoder is achieved when
the total Lagrangian cost functional J = D + λL is minimized. It
is well known that for λ > 0 the cost functional J in the encoder
is minimized when the distortion length slope ∂D/∂L for each sub-
band frame is equal to−λ. Let ys,n be the transformed coefficient of
the LIAT subband s at position n. Using the high rate coding model,

we formulate the total distortion and total coded length as [12, 13]

D =
∑
s,n

Ds,n =
∑
s,n

|ys,n|2gs,ne−aLs,n (2)

L =
∑
s,n

Ls,n =
∑
s,n

(
Ls,n + Lσs,n

)
(3)

where a = 2 ln 2, gs,n is the corresponding spatio-temporal syn-
thesis gain, and Lσs,n and Ls,n refer to the coding length required
to signal the significance and magnitude bits respectively. The pa-
rameter gs,n is essentially the product of the spatial and temporal
synthesis gains.

In the EBCOT coding strategy a significance state is first coded
which indicates the presence of a zero or non-zero coefficient at
a particular location. This is then followed by a refinement stage
which communicates the sign and magnitude bits of the coefficient
if it has been signaled as being significant (i.e. non-zero) [10]. We
use Lσs,n to indicate the required bits to communicate the signifi-
cance state and Ls,n to represent the bits required for coding the
magnitude and sign of the transformed subband coefficient at posi-
tion n. The EBCOT algorithm employs arithmetic coding to signal
the significance state; therefore for our analytical work we model
the corresponding number of bits required as Lσs,n = − log2 ps,n,
where ps,n refers to the probability of the subband coefficient being
non-zero and is estimated a priori based on the observation of similar
subband coded frames [13].

Given the distortion model in (2) and under R-D optimality con-
ditions ∂D/∂L = −λ, it is not beneficial to expend any bits if
|ys,n|2 ≤ λ/(ags,n). This means that distortionDs,n = gs,n|ys,n|2
and the rate Ls,n is equal to the number of bits required to signal a
non-significant state which in reality should be very small and for
our analytical work is assumed to be zero (Ls,n ≈ 0). For val-
ues of |ys,n|2 exceeding the threshold λ/(ags,n) it is necessary to
expend bits to communicate the coefficient magnitude; the optimal
number of bits required and the resulting distortion after coding can
be readily derived and is further explained in [13]. The correspond-
ing Lagrangian cost functional J(ys,n) at R-D optimal operation is
given in equation (4).

Jys,n =

{
gs,n|ys,n|2
λ
a
+ λ

a
ln
(
gs,n|ys,n|2

λ/a

)
+ λLσs,n

if |ys,n|2 ≤ λ
ags,n

otherwise
(4)

We refer to Jys,n as a “quadratic-log” function of ys,n which is de-
picted in Fig. 2. Therefore, total coding cost of the LIAT subband
frame s can be written as

Js =
∑
n

Jys,n (5)

Our aim is to estimate α such that the total Lagrangian cost func-
tional

J = Jα + Jh(α) + Jl(α) (6)

is minimized. The quadratic-log function in (4) is neither convex or
sub-quadratic. Therefore in this paper, as an initial step to solve (6),
we use an `1-norm upper bound function as illustrated in Fig. 2. This
`1-norm upper bound is a surrogate function for the quadratic-log
function and is used as a precursor to better approximations of the
problem in (6) that we intend to pursue in the future. The gradient
of the `1 function for practical values of Lσs,n can be obtained from
(4) as

ms,n =
λ/a+ λLσs,n√

λ
ags,n

(7)
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Fig. 2. Quadratic-log cost function and the corresponding `1 norm as its
upper bound.

Using the `1-norm function ‖msys‖1 =
∑
n |ms,nys,n| as an up-

per bound for Js, the cost objective functional in (6) can be approx-
imated by `1-norm functions as

argmin
α

C(α) = ‖mαyα‖1 + ‖mhyh(α)‖1 + ‖mlyl(α)‖1 (8)

4. OPTIMIZATION USING ADMM

In this section, we introduce new notation and make certain ap-
proximations so as to rewrite the cost objective of equation (8) in
a form that can be readily solved by the well known convex opti-
mization method ADMM (alternating direction of multipliers) [14].
Let z = yα = A(α) and α = S(z), where S is the spatial synthesis
operator (inverse operator for A). As the cost objective function in
(8) is a function of α, it can be also written as a function of z using
(1).
argmin

z
C(z) =‖mαz‖1 + ‖mhA(f1)−mhA(f0S(z))‖1

+ ‖mlA(f0 + bf1)−mlA(bf0S(z))‖1
(9)

If b′ is approximated such that A (bf0S (z)) ' b′A (f0S(z)), the
optimization problem in (9) can be rewritten as:

argmin
z

C(z) =‖mαz‖1 + ‖mhA(f1)−mhDz‖1

+ ‖mlA(f0 + bf1)−mlb
′Dz‖1

(10)

where D is a linear operator such that Dz = A (f0S (z)). We will
later discuss how b′ is approximated. The optimization problem of
equation (10) can now be expressed in a form that can be readily
solved by ADMM as shown below.

minimize f(z) + g(z̃)

subject to z̃ −Dz = 0
(11)

Here, f(z) = ‖mαz‖1 and g(z̃) = ‖mhA(f1) − mhz̃‖1 +
‖mlA(f0 + bf1) − mlb

′z̃‖1. Note that f(z) refers to the coding
cost of the α field while g(z̃) signifies the coding cost of the tem-
poral high pass and low pass LIAT subband frames. The variables
z and z̃ enable each of these cost terms to be expressed in a most
natural and straightforward manner while the constraint of equa-
tion (11) defines the relationship or dependency between the two
variables. The augmented Lagrangian of (11) can be written in the
scaled format of ADMM as (see [14] section 3.1.1)

Lρ =f(z) + g(z̃) +
ρ

2
‖Dz − z̃ + u‖22 −

ρ

2
‖u‖22 (12)

where u is the scaled dual variable for the constraint z̃ − Dz =
0. Using the linearized ADMM algorithm (see [15] sec.4.4.2), the
solution can be iteratively found by the following update steps [15].

zk+1 = argmin
z

(
f(z) +

1

2µ
‖z − vk‖22

)
(13)

z̃k+1 = argmin
z̃

(
g(z̃) +

1

2γ
‖z̃ − (uk +Dzk+1)‖22

)
uk+1 = uk +Dzk+1 − z̃k+1

Fig. 3. Sample images from indoor and outdoor image sequences.

where vk = zk − µ
γ
DT (Dzk − z̃k + uk) and 0 < µ ≤ γ/‖D‖22.

The proof of ADMM convergence can be found in [14]. The reports
of convergence using the linearized algorithm are also discussed in
[15] and references therein.

To approximate b′ in (10), we assume that the update factors
can be well modelled by a smoothly varying 2D field. From our
observations, this remains predominantly true for the vast majority
of image regions. To determine b′, first, we find αl as a smooth
version of α field by removing its high frequency components in the
wavelet domain and bl is found as bl = αl

1+α2
l

. Then, the low pass
filter coefficients for the 5/3 wavelet are used to filter the bl. We take
the absolute values of the coefficients [-1/8, 2/8, 6/8, 2/8, -1/8] and
normalize them to obtain a smooth “local averaging” filter as in (14).

F = [1/12, 2/12, 6/12, 2/12, 1/12] (14)

Finally, b′ is estimated by filtering bl with the local averaging filter
as in (15).

b′ = F ∗ bl (15)

5. DISCUSSION AND EXPERIMENTAL RESULTS

Fig. 3 shows some samples of image sequences which are used in
HD resolution to test the proposed algorithm. The indoor sequences
correspond to scenes with directional, non-uniform, illumination
variations from [16–18]. The outdoor sequences are from low frame
rate surveillance cameras from the AMOS dataset [19] and the
“building sequence” is one which we captured at a frame rate of
one frame every 15 minutes. We compare the performance of the
proposed R-D optimized illumination estimation scheme with the
mesh-based illumination model from our previous work. We also
compare with conventional highly scalable coding schemes, these
relate to (i) replacing the temporal transform with the Haar and (ii)
independent coding of each frame with JPEG 2000.

R-D results and estimated α fields for a pair of images (second
and third frames, second row of Fig. 3 for both indoor and outdoor
sequences) which are from Scene 11 and the Oslo-Linpro AS dataset
are illustrated in Fig. 4 and 5 respectively. Results of the proposed R-
D optimized method are labelled “LIAT-RDO” while “LIAT-Mesh”
indicates the R-D results of illumination estimation by employing
the affine mesh model. Curves labelled “J2K” relate to indepen-
dent coding of each frame with a JPEG 2000 encoder that employs
the 5/3 wavelet transform. Results labelled “Haar” relate to tempo-
ral Haar transform being applied on image sequences prior to the
spatial transform. In all cases, the resulting temporal subbands are
coded with a JPEG 2000 encoder using the same configuration as
that described earlier for the “J2K” case.

As seen in Fig. 4(a) the proposed method outperforms other
approaches. For illumination estimation that relies upon the affine
mesh model, we need to consider a range of different mesh sizes to
identify a mesh model that produces the best R-D performance. For
Fig. 4 using mesh size N = 16 shows the best result among other
mesh sizes. We have shown results for N = 64 for comparison.
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Fig. 4. R-D results for the second and third frame of Scene 11 sequence in
Fig.3 using illumination estimation with (b) proposed R-D optimized method
(c) affine mesh size 16 and (d) mesh size 64.
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Fig. 5. R-D results for the second and third frame of Oslo-Linpro AS se-
quence in Fig.3 using illumination estimation with (b) proposed R-D opti-
mized method (c) affine mesh size 16 and (d) mesh size 64.

Figure 4(c) and (d) illustrate that the sparsity of the illumination field
estimated by a predefined mesh size does not change spatially over
the frame. However, the illumination field estimated by the proposed
R-D optimized method in Fig. 4(b) is sharp in some areas while be-
ing smooth in other parts. This can be understood as the proposed
framework allowing the α field to adapt its spatial sparsity based on
a target R-D operating point. The procedure considers placing high
frequency information either in texture or α field taking heed of their
final coding cost.

The differences between the mesh-based and the proposed illu-
mination estimation are most evident at boundaries of objects where
there is an abrupt change in illumination, for example the top edge
of the book in the frame of Fig. 4. Such sudden changes in illumi-
nation do not conform to any predefined smooth models and hence
our prior scheme is inferior in handling these regions. Similar ob-
servations can be made for the case shown in Fig. 5. We note that
this outdoor data set corresponds to much larger variations in illumi-
nation. In such cases that there is not enough temporal correlation
between frames, it is preferred to send them separately without ap-
plying any temporal transform. As seen in 5(a), “J2K” is working
better than “Haar”. However, the superior performance of our pro-
posed scheme illustrates its ability to efficiently adapt to sharp tran-
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Fig. 6. Indoor sequences R-D results for two temporal levels of LIAT frame-
work.
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Fig. 7. Outdoor sequences R-D results for two temporal levels of LIAT
framework.

sitions in illumination in both the temporal and spatial dimensions.
R-D results of the image sequences for two temporal levels of the
LIAT framework are shown in Fig. 6 and Fig. 7. The mesh size N
for mesh-based illumination estimation is chosen such that the best
R-D result is achieved for the “LIAT-Mesh” curves. Although we
are using an approximation of the cost function (i.e. `1 norm upper
bound), we are able to achieve the same or better R-D performance
than the mesh based scheme which requires a parameter search to
identify the best model. The experimental results therefore validate
our proposed optimization framework and motivate further research
to consider optimization strategies for the non-convex quadratic-log
cost function.

6. CONCLUSIONS

In this paper we propose theoretical foundations for a R-D cost func-
tional to estimate multiplicative illumination terms in the context of
a lifting-based illumination adaptive coding framework. We note
that this paper is not just about coding; we show that a compression
inspired convex formulation can be used to effectively distribute the
information in a sequence between multiplicative illumination terms
and non-multiplicative residual terms. In a fair comparison we find
that the optimized result consistently outperforms parametric mesh-
based models, in which the mesh parameters are tuned by trial and
error, which is a very promising result.
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