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ABSTRACT

This article proposes a fast Coding Unit (CU) partition deci-
sion for use in HEVC encoders based on Decision Tree clas-
sifiers. The trees are employed in a modified low-complexity
encoder that implements a fast CU partition decision algo-
rithm. Using the proposed method, an average complexity re-
duction of 47.8% is achieved with a Bjontegaard Delta bitrate
(BD-BR) loss of 0.24% in the Random Access coding config-
uration, and a 42.8% complexity reduction with a 0.19% BD-
BR loss in the Low Delay B configuration. A decision thresh-
old analysis is also presented to assess the rate-distortion-
complexity trade-off of the proposed method at different com-
plexity points, varying the complexity reduction from 28%
(with a 0.04% loss in BD-BR) up to 60% (with a 3.6% BD-
BR loss) using the Random Access configuration. A compar-
ison with related works shows that the proposed method out-
performs competing solutions in terms of both rate-distortion
efficiency and complexity reduction.

Index Terms— HEVC, machine learning, fast decision,
decision trees

1. INTRODUCTION
The High Efficiency Video Coding (HEVC) standard [1],
developed by a group of video-coding experts known as
the Joint Collaborative Team on Video Technology (JCT-
VC), outperforms the coding efficiency of the established
H.264/AVC by 39.3% in terms of Bjontegaard Delta bitrate
(BD-BR) [2][3]. However, to accomplish that the computa-
tional requirements of HEVC are also higher. As stated in
[4], the HEVC encoder requires from 20% to 50% more com-
putations to compress videos when compared to H.264/AVC.

In HEVC, frames are divided into blocks called Coding
Tree Units (CTU), which can be further divided into Coding
Units (CUs). The CU partition decision follows a recursive
four-fold subdivision, forming what is called a CTU quadtree.
In the root node of this quadtree (depth 0), the 64⇥64 CU
block is evaluated and then it is divided into four 32⇥32 sub-
blocks. This process is repeated until 8⇥8 blocks are formed
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(i.e., depth 3 is reached). The prediction mode decision is per-
formed inside each quadtree node, which are candidate CUs.
HEVC defines up to eight partitions (called Prediction Units –
PUs) to further increase the flexibility of mode decision. Mo-
tion Estimation (ME), Skip/Merge mode, and intra prediction
are all evaluated for each possible PU belonging to a CU. In
the next encoding stage, where transforms are applied to con-
vert prediction residues from the spatial to the frequency do-
main, the residue blocks are once again recursively divided,
from 32⇥32 down to 4⇥4 blocks. This introduces a Residual
quadtree (RQT) of transform blocks, which is nested inside
each node of the CTU quadtree. Fig. 1 displays a CTU block
and its selected partitions represented as blue-filled blocks.

The Rate-Distortion Optimization (RDO)-based mode de-
cision is one of the main contributors to HEVC complexity, as
ME and transforms are computed several times in each CTU
quadtree node. Therefore, several works found in the liter-
ature address this problem by designing fast mode decision
algorithms. Most of these references make use of statistics-
based heuristics for fast mode decision, including [5], [6] and
[7]. In recent studies, machine learning techniques have also
been employed to speed up the mode decision process, us-
ing Decision Trees (DT) [8], Bayesian Decision Rule [9],
and Support Vector Machines [10][11]. When both encod-
ing time reduction and compression efficiency are considered,
the results achieved by learning-based methods outperform
statistics-based approaches.
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Fig. 1: HEVC mode decision for CU/PU partitioning. White-
filled blocks are evaluated, but not used to encode the data.
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This paper presents a fast algorithm for CU partitioning
decision using Decision Tree classifiers. The proposed clas-
sifiers are trained offline and employed in a modified HEVC
encoder that uses the decision function to determine if the cur-
rent CU should be further partitioned or if the partitioning can
be terminated prematurely. This study follows after the work
presented in [8], showing that better features can improve the
efficiency and the generalization of classifiers. The following
contributions are presented in this paper:
• A low-complexity HEVC encoder based on classifiers

that employ new coding features relevant to the CU
partition decision, allowing rate-distortion-complexity
trade-off beyond current state-of-the-art techniques;

• A complexity scalability strategy for HEVC that uses
classifiers’ thresholds to achieve optimized rate-distortion-
complexity trade-off for different operation points.
The remainder of this paper is as follows. Section 2 shows

an analysis of the features used in this work. Section 3 ex-
plains how machine learning was used to reduce HEVC com-
plexity and the decision threshold technique for complexity
scalability. Section 4 presents results and comparisons with
related work. Finally, section 5 concludes the paper.

2. HEVC FEATURE ANALYSIS
The encoding process yields much information that can be
used as input for a CU partition classifier, but at the end only
part of it will be useful and relevant to the partitioning deci-
sion. In [8], a set of 10 features was used to build a set of
models, including values that can be obtained during encod-
ing, such as the skip flag, the rate-distortion (RD) costs, and
the PU mode decision in the current CU. In addition, new
features were designed by combining two or more values,
which are presented in the following equations:

Ratiom1,m2 =
RDCostm1

RDCostm2
(1)

NormDiffm1,m2 =
|RDCostm1 �RDCostm2|

RDCostm2
(2)

�NeighDepth = depthcurr �AvgDepthCtx (3)

AvgDepthCtx =

PN
AvgDepth(N)

N

(4)

AvgDepth =

PM
DepthCU(M)

M

(5)

In (1), the Ratio between the RD costs obtained from
modes m1 (e.g., 2N⇥2N) and m2 (e.g., Merge/SKIP mode
– MSM) is computed, and its normalized version is computed
in (2). In (3), the average depth of the neighboring CTUs is
first computed with (4), using the depth of its M constituent
CUs, as in (5). Then, the average of these averages is com-
puted and subtracted from the depth of the CU being currently
encoded, yielding the �NeighDepth value. The neighboring
CTUs include four spatial neighbors and up to two temporal
neighbors (one from each reference list), so up to 6 neighbors
are used in the calculation of �NeighDepth.

Table 1: Features introduced in this work
Id. Description Id. Description
f11 Best prediction mode f28 Coded Block Flag (CBF)
f12 Total encoded bits f40 co-located CU split flag
f17 Total distortion f41 upper CU split flag
f22 NormDiffBest,2N⇥2N f42 left CU split flag
f23 RatioBest,MSM f51 up-right CU split flag
f24 NormDiffBest,MSM f52 AvgDepthCtxCU

f27 RQT depth f53 �NeighDepthCU

In this work, 44 new features were introduced, yielding
a set of 54 features with the ones used in [8]. The most rel-
evant of these 44 new features in terms of Gain Ratio (GR)
are presented in Table 1. In the remainder of this paper, the
features with indices between 0 and 9 will refer to those of
[8], whereas features with indices above 9 represent the ones
introduced in this work. Most features listed in Table 1 are
extracted directly from the encoding process, except for f22,
f23 and f24. The AvgDepthCtxCU value is a variation of (4)
that uses only the depth of neighboring CUs instead of the
average CTU depth. Similarly, �NeighDepthCU is computed
using AvgDepthCtxCU instead of AvgDepthCtx.

The importance of each extracted feature was assessed
in terms of GR, because the C5.0 algorithm uses this metric
to rank features by their importance during the tree building
phase. Given a set of feature vectors X and their respective
labels Y , the GR of a feature f is the ratio between two val-
ues: (1) the Information Gain, which measures the entropy
reduction of Y given the information of Xf , and (2) the In-
trinsic Value, which measures the potential information gen-
erated by splitting the training data into each value of Xf . Fig.
2(a) shows the GR obtained using the set of features from [8]
and Fig. 2(b) shows the features with the ten highest GRs us-
ing the extended set proposed in this work. It is possible to
see that the features introduced in this work are more relevant
than most of the features used by [8]. The total encoded bits
(f12), introduced in this work, achieved the highest GR. This
value is used to compute the RD cost, so it is tightly related
to the final RDO decision. The third best feature (CBF, f28),
also introduced in this work, is a flag that is set to false when
the residual block has no significant coefficients (increasing
the compression rate), so it is also reasonable that this feature
is important for the split/unsplit prediction.

The split probability distributions of the two best features
(in terms of GR) introduced in this work are presented in Fig.
3. In Fig. 3(a), it is possible to perceive that the unsplit CUs
are much more frequent when the CBF flag is off, whereas
the opposite occurs when it is on. In Fig. 3(b), it is possible
to see that the probability of a CU not being split is very high
only when the amount of encoded bits is close to zero. The
greater GR of the introduced features indicates that the clas-
sifiers trained with the proposed features will perform better.
The training results and the implementation of the obtained
models are discussed in the following sections.
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(a) Previous features

(b) Proposed features

Fig. 2: Gain Ratio of the (a) previous [8] and (b) proposed
features for each depth.

(a) Coded Block Flag (f28) (b) Encoded Bits (f12)

Fig. 3: Split probability distributions of the two best features
in the proposed set (depth = 2).

3. CU SPLITTING BASED ON DECISION TREES
The decision tree models that employ the features derived
in the previously section were trained with data collected
from the HEVC Model (HM) encoder (version 16.8) for
ten video sequences with various resolutions, namely: Traf-
fic, NebutaFestival (2560⇥1600 pixels); BasketballDrive,
Parkscene (1920⇥1080); SlideShow, Vidyo1 (1280⇥720);
BQMall, PartyScene (832⇥480); and BlowingBubbles, Race-
Horses (416⇥240). The sequences were encoded with QP
values of 22, 27, 32, 37 and 42, using the Random Access
(RA) configuration, and the number of encoded frames per
sequence was limited to 150. The features described in sec-
tion 2 were collected for each CU, forming feature vectors
that were labeled as split, when the cumulative RD cost of
the four sub-CUs was smaller than the current one, or unsplit
otherwise. After all data were collected, three training sets
were built, one for each quadtree depth (0, 1 and 2). Then,
each set was balanced to ensure the same distribution of split
and unsplit cases using random under-sampling.

Table 2 shows the training results using the C5.0 algo-
rithm [12], including accuracy, true positive rate (TPR), and
max tree depth of each classifier, using 200,000 training vec-
tors. To ascertain the efficiency of the proposed set of fea-

Table 2: Train accuracy, true positive rate, and tree depth of
the trained classifiers (200,000 vectors per data set)

Feature set depth Accuracy TPR Tree Depth
d0 90.9% 89.5% 13

previous [8] d1 91.2% 89.1% 13
d2 91.2% 88.8% 19
d0 92.7% 91.9% 20

proposed d1 93.6% 92.2% 24
d2 94.2% 92.3% 21

tures, Table 2 compares the training accuracy of the classi-
fiers trained with both data sets. Note that using more fea-
tures increases the depth of the trees, but it represents a very
small overhead when compared with the enormous amount of
computations that are saved every time an early termination
happens, as section 4 shows.

3.1. Low-Complexity HEVC Encoder
The trained classifiers are used as input to a modified HEVC
encoder that implements an early CU termination scheme, de-
picted in Fig. 4. Two methods were implemented in the HM
software: (1) the feature extraction and (2) the decision func-
tion using the classifiers and the extracted features as input.

compressCU(d, part)
compute_best_mode

compute_features

split = classify (features, d, threshold)

split = 1? return best_mode

compressCU(d+1, part0)

compressCU(d+1, part1)

compressCU(d+1, part2)

compressCU(d+1, part3)

NY

Early CU Termination

64x64 32x32 16x16

trained classifiers

Fig. 4: Early CU termination scheme.
In Fig. 4, the best mode for the current CU is computed

and then the feature extraction routine is called to generate
the input vector for classification. The decision function is
called in the next step, using the classifier trained for the cor-
responding CU size, and its output is tested. If the classifier
outcome is split, the CU partitioning evaluation is continued.
Otherwise, the splitting evaluation is terminated prematurely
and the best mode found for the current CU is chosen.

3.2. Complexity-Scalable HEVC Encoder
The complexity reduction strategy presented in the previous
paragraphs was employed in a complexity-scalable encoder
implementation. This was achieved by including a split
threshold (Splitth) parameter in the decision function, which
leads to more or less split outcomes. First, the original deci-
sion is computed (split) along with its confidence factor (C).
The confidence of a decision is always computed along with
it in the C5.0 algorithm. Then, split0 is computed as:

split

0 =

8
><

>:

1 if Splitth < 0.5 and C < (1� Splitth)

0 if Splitth > 0.5 and C < Splitth

split otherwise
When Splitth is set to 0.5, the final output is exactly the

same as the original classifier decision. When it is set below
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0.5, any decision with a confidence below 1 � Splitth is re-
set to split, which increases the compression efficiency while
decreasing the time savings. The opposite behavior occurs
when the threshold is set above 0.5, favoring time savings
over compression efficiency. A split threshold analysis and
other comparisons are presented in the following section.

4. RESULTS AND DISCUSSION

To assess the RD performance of the proposed method, 13
sequences with varying resolutions were used, following the
Common Test Conditions defined by the JCT-VC group [13].
To reduce the risk of bias, the set of sequences in this analysis
is complementary to the one used in the training phase. The
RD and complexity results of the test sequences are presented
in Table 3. For these experiments, the default threshold was
used in the decision function (i.e., Splitth = 0.5). Time sav-
ings (TS) were computed as TS = 1 � Ttest/Tref , where
Tref is the encoding time of the original reference software
(HM 16.8), and Ttest is the encoding time with the proposed
method, including the decision function calls. On average,
the results in Table 3 show that the method is capable of re-
ducing the HEVC encoding time in 47.8%, at the cost of a
negligible compression efficiency loss of 0.24%. The right-
most column shows the ratio between RD efficiency and TS
(BDTS), which is a commonly used metric to measure rate-
distortion-complexity efficiency. On average, for every 1% in
TS, a BD-rate increase of 0.0051% is required.

A comparison with related works is presented in Table
4, where Previous represents the work of [8], which was re-
implemented in HM 16.8. The results prove that the new strat-
egy outperforms [8] for all configurations. The performance
difference is smaller for the Random Access (RA) configu-
ration because the authors in [8] used RA data to train their
models, but when other configurations (Low Delay P – LP,
and Low Delay B – LB) are considered, the difference is more
significant. These results show that the proposed classifiers
generalize better than [8], since the training sets also use only
RA data. When compared to the remaining related works, the
results outperform them in BD-BR, TS and BDTS.

The final analysis presents the effect of the Splitth param-

Table 3: Rate-distortion and complexity results of the pro-
posed method (Random Access, QP = 22, 27, 32, 37)

Class Sequence BD-BR (%) TS (%) BDTS (⇥100)
A PeopleOnStreet 0.28 23.0 1.21

SteamLocomot. 0.32 53.9 0.59
B Kimono 0.42 43.7 0.96

BQTerrace 0.47 53.1 0.88
C RaceHorsesC 0.14 20.8 0.68

BasketballDrill 0.17 40.7 0.41
D BasketballPass 0.16 43.1 0.37

BQSquare 0.22 45.5 0.48
E KristenAndSara 0.12 69.1 0.18

Johnny 0.19 69.1 0.27
F SlideEditing 0.01 73.3 0.01

ChinaSpeed 0.44 37.8 1.17
Average 0.24 47.8 0.51

Table 4: Comparison with the related work
Cfg. Method/Reference BD-BR (%) TS (%) BDTS (⇥100)
RA Bayesian [9] 0.71 34.9 2.03

SVM [10] 1.35 44.7 3.02
DT Previous [8] 0.32 47.2 0.67
DT Proposed 0.24 47.8 0.51

LB Bayesian [9] 0.63 32.6 1.93
SVM [10] 1.66 41.9 3.02

DT Previous [8] 0.46 40.8 1.12
DT Proposed 0.19 42.8 0.45

LP Bayesian [9] 0.62 32.7 1.89
SVM [11] 2.66 59.9 4.44

DT Previous [8] 0.39 38.1 1.03
DT Proposed 0.22 41.2 0.53

eter on rate-distortion-complexity efficiency. Several values
for this parameter were tested, using the same sequences
listed in Table 3. The results are summarized in Fig. 5.
The chart shows that the Splitth has significant impacts on
both time savings and BD-BR. TS increases in a quasi-linear
trend, whereas the BD-BR barely changes with a Splitth up to
0.8, but grows rapidly with larger values. The smallest time
savings achieved are 28% with negligible 0.04% increase
in BD-BR, whereas the highest time savings of 60% are
achieved at the cost of 3.6% in BD-BR. However, a smaller
BD-BR increase of 0.61% is observed for an average savings
of 51%, which is a much better trade-off. These results ul-
timately let us conclude that several complexity points can
be achieved with minimum RD loss using the Splitth thresh-
old, which is useful for applications that require complexity
scaling whereas still maintaining the encoding efficiency.

5. CONCLUSION

This paper presented a complexity reduction method for
HEVC encoders that employs a set of classifiers trained with
the most relevant features extracted from the encoding pro-
cess to the CU splitting decision. The features were chosen
after an extensive Gain Ratio analysis and used to train three
decision tree models with the C5.0 machine learning algo-
rithm. The obtained trees were implemented in the HEVC
encoder and allowed a complexity reduction of 47.8%, at the
cost of a negligible BD-rate increase of 0.24%. Finally, the
use of a confidence threshold for complexity scaling was also
analyzed and the experimental results showed that the com-
plexity reductions can be adjusted between 28% and 60%,
with BD-rate increases varying between 0.04% and 3.6%.

Fig. 5: TS and BD-BR for different values of Splitth
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