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ABSTRACT

The design of measurement matrices is an important part in com-
pressed sensing (CS). Random matrices superior to incoherence are
considered to be optimal measurement matrices to achieve success-
ful recovery. However, they are deficient in memory cost. Struc-
ture matrices like circulant matrices are preferred for low-memory
cost. Nevertheless, their recovery performance is greatly damaged
because of element coherence. In this paper, a new method called
different-spaced selection & different-spaced flipping (DSS & DSF)
is proposed to modify structure matrices. Based on circulant matri-
ces, regular extraction and symbol flipping imposed on columns of
measurement matrices can increase randomness to a large scale. As
a result, not only near optimal recovery but also much less memory
cost can be achieved. Compared with Gaussian random matrices,
the memory cost can be reduced to 4% when measurement matrices
based on circulant matrices are in 128 × 512 dimensions. An effi-
cient hardware design and VLSI implementation are also presented
at the end of this paper.

Index Terms— Measurement matrix, compressed sensing (CS),
structure matrix, memory cost, hardware implementation.

1. INTRODUCTION

The reasonable design of measurement matrices plays a significant
role in compressed sensing (CS) [1] framework, because the product
of the measurement matrix and basis matrix has to satisfy restrict-
ed isometry property (RIP), which guarantees a successful recov-
ery. Random matrices such as Gaussian random matrices have been
proved to meet the criterion and have low coherence [2]. However,
they cost too much memory space to store all elements when imple-
mented in hardware. Structured matrices [3] are then proposed to
replace random matrices to make up memory cost, but they will lead
to the recovery performance decline.

In this paper, to enhance the performance decline caused by high
coherence, a more efficient method is proposed to modify structured
matrices, whose aim is to scramble structured matrices and break
up their internal structures. After the application, both near optimal
recovery performance and 96% memory space reduce can be real-
ized. A more detailed comparison among the sign-flipped scram-
bling method, extended-select scrambling method [4] and the pro-
posed DSS & DSF method is provided. In addition, the architecture
designs and VLSI implementation are introduced to make compar-
isons.

The remainder of this paper is organized as follows. Section II
will introduce the preliminaries of CS theory, the characteristic of

structured matrices. Section III discusses the proposed method and
its simulation results compared with other methods. The architecture
design and VLSI implementation results are analysed in Section IV.
Finally, Section V concludes the entire paper.

2. BACKGROUND

2.A. Preliminaries of CS

Signal sparsity is a key ingredient in CS framework. Generally, an
input signal x can be spread by basis matrix Ψ and coefficient vector
α. Thus, almost all signals could be recognized as sparse by spread-
ing under sparse basis matrix as follows. Both x = [x1, x2, ..., xN ]T

and α = [α1, α2, ..., αN ]T are N × 1 vectors, and basis matrix
Ψ = [Ψ1,Ψ2, ...,ΨN ] is in N ×N dimensions.

x =

N∑
i=1

Ψiαi = Ψα. (1)

The signal x is k-sparse, that means, there are k elements in the
coefficient vector α are non-zero at most. Thus, the sparse signal x
can achieve recovery from the measurement vector y and measure-
ment matrix Φ. And its mathematical linear expression is presented
as Eq. (2), where the measurement matrix Φ is M ×N dimensions
(M < N ). The product of measurement matrix Φ and basis matrix
Ψ is denoted by sensing matrix Θ, which is M ×N in dimensions.

y = Φx = ΦΨα = Θα. (2)

To ensure a successful recovery, there are two criterions for mea-
surement matrix to meet. At first, measurement matrix Φ and basis
matrix Ψ should satisfy the condition of low coherence. The coher-
ence [5] between the measurement matrix Φ and the basis matrix Ψ
comes to

µ(Φ,Ψ) =
√
N · max

1≤k,j≤N
|⟨ϕk,Ψj⟩|. (3)

The equation requires vectors in matrix Φ are orthogonal to vec-
tors in matrix Ψ. That is to say the value µ should be small enough
correspondingly.

Secondly, the sensing matrix and k-sparse signal should meet
the restricted isometry property (RIP). Thus, the ability of successful
recovery is guaranteed. In that case, a matrix meets the criterion of
low coherence when satisfying RIP [6], which is defined as

(1− δk)∥α∥22 ≤ ∥Θα∥22 ≤ (1 + δk)∥α∥22. (4)
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Matrix Θ can be viewed as meeting RIP when δk is a constant
which is greater than 0 slightly. The random matrices have been tes-
tified to satisfy the RIP and incoherence [7]. Generally, the recovery
performance of a CS process is considered to be optimal when Φ is a
random matrix. However, storing all elements of random matrix oc-
cupies too much memory space, which causes it infeasible to achieve
in hardware. This motivates the study of easily implementable CS
matrices. To decrease memory cost, matrices with low-memory cost
are more practical.

2.B. Structured Matrix

The application of structured matrices such as Toeplitz and circulant
matrices has been proposed for CS because of its low-memory cost.
Circulant matrix is a special form of Toeplitz matrix where the ele-
ments descending diagonally from left to right are constant. Toeplitz
(T) matrices and circulant (C) matrices have the patterns shown as
Eq. (5) and Eq. (6) respectively.

T =


tN tN−1 tN−2 ··· t2 t1

tN+1 tN tN−1 ··· t3 t2
tN+2 tN+1 tN ··· t4 t3

...
...

...
. . .

...
...

tN+M−1 tN+M−2 tN+M−3 ··· tM+1 tM

 . (5)

C =


cN cN−1 cN−2 ··· c2 c1
c1 cN cN−1 ··· c3 c2
c2 c1 cN ··· c4 c3

...
...

...
. . .

...
...

cM−1 cM−2 cM−3 ··· cM+1 cM

 . (6)

The form of Toeplitz matrix is similar to circulant matrix and
they can convert to each other. Therefore, our discussions below
are based on circulant matrix. For a measurement matrix of size
M ×N , circulant matrix only requires the cost of N memory space
while Gaussian random matrix needs M × N traditionally. Circu-
lant matrix obviously saves much more memory cost compared to
Gaussian random matrix under such condition.

3. PRACTICAL CS MATRIX BASED ON CIRCULANT
MATRIX

3.A. The Proposed Method

To obtain reliable simulation results, Monte Carlo method is pre-
ferred in this paper. Every valid data record in this paper are the
mean value of 5000 trials. Successful recovery rate (SSR) is used
to record the qualified ratio from 5000 experiments. A recovery is
considered to be qualified only if the normalized root mean square
error (NRMSE) is less than 10−3. Generally, NRMSE is calculated
by Eq. (7).

NRMSE =

√
1

N

N∑
i=1

(x̂i − xi)2

max(x)−min(x)
. (7)

As mentioned previously, structure matrices are proposed to sub-
stituted random matrices to save memory cost. However, due to
the special structure of the structure matrices, their recovery per-
formance suffers a lot compared with Gaussian random matrices’.
Numerical results in Fig. 1 have presented the quality difference.

It is easy to observe that the successful recovery rate by using
Gaussian random matrix is almost 100% when sparsity level (k) is
below 28 while circulant matrix and Toeplitz matrix perform badly

Fig. 1. Reconstruction performance comparison among Gaussian
random matrix,Toeplitz matrix and circulant matrix.

even when k is set as the lowest number 1. To compensate for the
deficiency caused by high coherence, the different-spaced selection
& different-spaced flip (DSS & DSF) method is recommended to
rebuild measurement matrix Φ based on circulant matrix.

At first, circulant matrix is marked as ΦCir for simplicity.
Secondly, a new modified matrix Φs is obtained by extracting N
columns from an extended matrix Φext cir regularly, where matrix
Φext cir is an M × Next matrix. The extended matrix is a much
more larger circulant matrix produced by Next elements, instead
of N (Next > N ). Thus, some operations are made to increase
randomness and get the proper size. The first change imposed on
ΦCir is represented as following form.

Φs = Φext cirS. (8)

The new modified matrix Φs remains M ×N and selection ma-
trix S is Next×N correspondingly. The value of Next is not unique.
A rule is confirmed here that the columns in Φs is obtained by the
intervals I of increasing sequence 1 to 5. When the interval reaches
5, the interval between selected columns begins at 1 again. Repeat
until N columns are selected. As shown by Fig. 2, the columns
in Φext cir marked as blue are abandoned and Φs is made of pink
ones. After such adjustment, the coherence of measurement matrix
can be lower than original matrix ΦCir.

Selected

Columns

Original

Columns
M

. 
. 

.

. . .

ext
N

 

1 2 3 4 5 1 2

. . .

Fig. 2. Illustration of selection rules for measurement matrix.

To further increase the randomness of measurement matrix,
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more interference is added to matrix Φs by having some columns
for symbol flipping. Similar to previous operation, the columns
chosen to be flipped are at the intervals I changing from 1 to 9.
Repeat until the all the columns in matrix Φfin that satisfy the rules
are processed. Matrix F (N ×N) is used to show the interference.

Φfin = ΦsF. (9)

The operation of symbol flipping can be achieved easily by mul-
tiply −1, which looks like a simple operation but actually has a great
effect because it breaks the inherent structure to a much larger de-
gree.

…
M

Selected

Columns

Symbol 

Flipping

N

1 2 3 4

. . .

. . .

. . .
5~9 1 2

. . .

Fig. 3. Illustration of symbol flip rules for measurement matrix.

The final measurement matrix Φfin is optimized after applying
DSS & DSF method. With these modifications, Φfin is much more
complex than original circulant matrix apparently. All the operations
can be expressed in the following mathematical expression in the
end.

Φfin = Φext cirSF. (10)

3.B. Simulation Results Comparison

In order to better describe our experiment, parameter settings are
claimed as follows. M and N are set to be 128 and 512, respectively.
The input signal x is generated randomly and the coefficient vector
α has the property of k-sparse and k increases at the interval 3 (k ∈
[1, 50]). The IDCT matrix is employed as the basis matrix Ψ. Since
OMP algorithm [8] has been used widely in signal recovery, all the
simulation results discussed below are based on it.

y = Φfinx = Φext cirSFΨα. (11)

As we explained previously, Eq. (2) can be rewritten into the
format of Eq. (11) after the measurement matrix Φfin is modified
by DSS & DSF. Fig. 4 shows different SSR curves obtained by
corresponding measurement matrix. SFS stands for measurement
matrix modified by sign-flipped scrambling method and ESS is on
behalf of measurement matrix modified by extended-select scram-
bling method. SFS+ESS is the combination of both two method-
s. Moreover, symbol I represents space between modified columns.
Measurement matrices modified with the same method but different-
spaced intervals are also compared in the simulation.

It is easy to notice from the Fig. 4 that all of the modification-
s work since their SSR are higher than circulant matrix’s, because
they increase the randomness of the measurement matrices in d-
ifferent extent. Measurement matrix based on circulant matrix or
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Fig. 4. Reconstruction performance comparison of proposed method
and other methods with M ×N = 128× 512.

Toeplitz matrix has a remarkable effect after applying the recom-
mended method, and their recovery performances are almost as good
as Gaussian random matrix’s. Thus, the proposed method also works
on Toeplitz matrix. Moreover, measurement matrix with SFS+ESS
comes secondly and circulant matrix without any changes certainly
performs the worst.

4. HARDWARE ARCHITECTURE AND VLSI
IMPLEMENTATION

4.A. Hardware Architecture

Circulating left-shift register arrays (RA) are used to design the rec-
ommended M×Next measurement matrix imposed on DSS & DSF
method. A number of Next elements generated by random sequence
are fed to the register arrays at the beginning. For each row pro-
duced, the elements in left-shift RAs rotate to the left once until M
rows are all produced and the RAs are driven by clock signals. This
property enables us have simple implementation as we did for LD-
PC codes [9–12]. In addition, a condition check logic is needed to
control the MUXs, deciding whether the elements selected from RAs
are output directly or modified by multiplying −1. Finally, the entire
measurement matrix can be obtained from MUXs.

Because columns in Φext cir to be chosen are at repeated regu-
lar intervals changing from 1 to 5, the relationship between the two
column ordinals is determined. Assuming that the symbol i stands
for the column ordinal in Φs and symbol j stands for the column
ordinal in Φext cir, then

j = ⌊ i
5
⌋ × 20 +

(i%5)× (i%5 + 1)

2
. (12)

MUXs along with not-gates can be anchored below the corre-
sponding register arrays to select the columns satisfied the relation-
ship in Eq. (12). Similarly, due to the intervals between columns
increasing from 1 to 9, there is also a determined relationship be-
tween i and column ordinal p in Φfin,

i = ⌊p
9
⌋ × 54 +

(p%9)× (p%9 + 1)

2
. (13)

A counter is necessary to help achieve sign flipping operation.
When the counter equals to column ordinal j that satisfy the rela-
tionship in Eq. (13), the condition check logic will have the columns
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output after multiplying −1, otherwise outputting directly. Thus, the
architecture achieves the proposed DSS & DSF method successfully.
Fig. 5 shows the functional hardware architecture in detail. Consid-
ering both flipping rule and elements utilization ratio, it is reasonable
to set Next as 4N .

,1if ,2if ,i Nf
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Element-shift Register Arrays
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1

Measurement Matrix Generating Unit
Decision 
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Fig. 5. Proposed architecture for generating measurement matrix
based on circulant matrix with DSS & DSF.

4.B. Analysis of Memory Cost

According to conventional hardware architecture [13], to realize a
generation device for Gaussian random matrix, the element memory
device consists of M sub-memories. In this paper, the sub-memory
is implemented by a ROM and its size is N × a, and each ROM
stores a specific row of the measurement matrix.

As analysed before, circulant matrix without any changes cost
the least memory and the modified circulant matrix comes the second
which is a little bit higher than original circulant matrix. There is no
doubt that storing a Gaussian random matrix costs much greater than
both of them.

Table 1. Comparison of Memory Cost and SSR.

Matrix type Memory cost
Reduction SSR

(M,N) = (128, 512) k = 25 k = 40

Circulant matrix N × a 99.2% 0 0

Cir+SFS+DSS Next × a 96.1% 0.9986 0.6952

Cir+DFS+DSS* Next × a 96.1% 1 0.7970

Gaussian matrix M ×N × a −−− 1 0.8390

The table above exhibits the comparison of different matrix
types on memory cost, reduction compared to Gaussian random ma-
trix and recovery performance. Supposing that storing an element
needs a bits, the memory cost of storing an M × N Gaussian ran-
dom matrix needs M ×N × a bits in all while to output an M ×N
circulant matrix only requires N × a bits memory space by using
the hardware architecture mentioned above. Although generating
a matrix Φfin needs to store Next elements, which is 25% higher
than basic circulant matrix, but it brings recovery performance im-
proved greatly. Compared to Gaussian random matrix, it still saves
almost 96% memory space. The measurement matrix imposed on
SFS+DSS costs memory space as much as that with DFS+DSS, but
its SSR performs worse. Overall, the proposed method comes the
best and is more practical to realize.

4.C. Synthesis Results and Comparisons

The architecture designs are implemented in ISE Design Suite 14.7
compiler tools. Due to the limitations of compiler, the dimension
of 128 × 512 will be hard for it to compile. Thus, a 16 × 64 mea-
surement matrix is preferred to shown the VLSI implementation and
synthesis results. For the sake of accurate reconstruction [14], at
least 6 bits are needed to value an element. Therefore, a is set as 6
bits in this VLSI implementation.

Table 2 presents the synthesis results. The frequency is set as
100 MHz in this implementation. In memory-based architecture, the
storage of elements for Gaussian random matrix is 16 ROMs and the
size of each ROM is width × depth = 6× 64. However, there is lit-
tle difference of the storage cost between the comparable SFS+DSS
matrix and proposed DFS+DSS matrix. What’s more, the number
of LUTs used by proposed matrix is almost half of comparable ma-
trix’s. In addition to the placement of component, the architecture
between the proposed matrix and comparable matrix [4] looks simi-
lar to each other, but the simulation results and implementation com-
parisons show the proposed matrix comes to the best among other
matrix mentioned in this paper.

Table 2. Synthesis Results of Different Measurement Matrices.
Gaussian

Random Matrix
Comparable

SFS+DSS Matrix
Proposed

DFS+DSS Matrix

Architecture
Memory-based

architecture
Similar

architecture
Proposed

architecture

Storage for
elements

16 ROMs 765 RAs 857 RAs

Frequency 100 MHz 100 MHz 100 MHz

LUT — 821 499

5. CONCLUSION

The quality of the measurement matrix’s design largely determines
the recovery performance of signal. Measurement matrix imposed
on proposed DSS & DSF method works out remarkable compared
to other methods in the simulation. Numerical results show that its
recovery performance is very close to the performance of Gaussian
random matrix. Moreover, nearly 96% memory space is saved when
generating the proposed matrix by element shift register arrays com-
pared to conventional Gaussian random matrix. What’s more, the
implementation cost between comparable SFS+DSS matrix and pro-
posed matrix are not statistically significant. Simulation results and
implementation comparisons show the proposed matrix comes to the
best among other matrix mentioned in this paper. Future work will
focus on more substitutional matrices or better hardware designs.
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