
JOINT LIST POLAR DECODER WITH SUCCESSIVE CANCELLATION AND SPHERE
DECODING

Xiao Liang1,2,3, Huayi Zhou1,2,3, Zaichen Zhang2,3, Xiaohu You2, and Chuan Zhang1,2,3,∗

1Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS)
2National Mobile Communications Research Laboratory, Southeast University

3Quantum Information Center of Southeast University, Nanjing, China
Email: {xiao liang, hyzhou, zczhang, xhyu, chzhang}@seu.edu.cn

ABSTRACT

For polar codes, both successive cancellation list (SCL) decoding
and list sphere decoding (LSD) aim to balance performance and
complexity. The same list structure but different decoding schedules
of SCL and LSD can lead to a combination of both schemes. In this
paper, an efficient joint list decoder with SCL and LSD (JLSCD)
is proposed to reduce time complexity. We apply SCL and LSD
schemes simultaneously but independently, then merge them at the
middle point of the decoding. Numerical results have demonstrated
JLSCD scheme’s advantage in complexity. FPGA implementation
of JLSCD decoder is also given in this paper.

Index Terms— Polar codes, joint decoding, successive cancel-
lation, sphere decoding, VLSI implementation.

1. INTRODUCTION

Polar codes, proposed by Arıkan [1, 2], can provably achieve the
symmetric capacity of binary-input discrete memory-less channels
(B-DMCs). Recently, polar codes have been selected for control
channel of eMBB by 3GPP.

Though successive cancellation (SC) has been proposed for po-
lar decoding, its performance is unsatisfactory compared with max-
imum likelihood (ML) decoder. For better performance, successive
cancellation list (SCL) decoder, which always keeps LC best can-
didate paths, was proposed [3, 4]. ML decoder implemented with
sphere decoding (SD) [5, 6] was studied in [7–9]. However, the com-
putational complexity of SD decoders is still high. List SD (LSD)
proposed in [10] applies breadth-first-search (BFS) to keep LD can-
didate paths with the minimum distances. It has a lower complexity
than SD decoder but with worse performance.

Since both SCL and LSD decoder try to balance performance
and complexity with BFS scheme over list structure, it is expected
to combine them for better balance. Since their decoding orders are
inverse, we apply them simultaneously but merge them at the middle
point of decoding. Because the SCL and LSD schemes can decode
independently, the time complexity will reduce.

The remainder of the paper is organized as follows. Section 2
reviews the preliminaries. Section 3 presents the proposed the de-
coding scheme. Section 4 gives the performance and complexity
analysis of different decoding schemes. FPGA implementation is
shown in Section 5. Finally, Section 6 concludes the entire paper.

2. PRELIMINARIES

2.1. Polar Codes

Denote a polar code by (N,K,A) [1], where N , K and A are the
block length of a polar code, the information length in one block
and the set of information bits, respectively. Let AC denote the
complement of A on {1, 2, ..., N}. The input alphabet, output al-
phabet, and transition probabilities of B-DMCs can be defined as
X , Y , and W (y|x), respectively, where x ∈ X and y ∈ Y . The
information vector, encoded vector, and received vector are denot-
ed by uN

1 = (u1, u2, ..., uN), xN
1 = (x1, x2, ..., xN), and yN

1 =
(y1, y2, ..., yN), respectively. The encoded vector can be generated
as xN

1 = uN
1 GN = F⊗nuN

1 , where n = log2 N and F = [1 0
1 1].

2.2. SC and SCL Polar Decoders

SC decoding calculates uN
1 successively. If ui is a frozen bit, then

ûi = 0. Otherwise, the SC polar decoder usually computes the log-
likelihood ratio (LLR) of each bit channel:

L
(i)
N (yN

1 , ûi−1
1) = log

W
(i)
N (yN

1 , ûi−1
1 | ui = 0)

W
(i)
n (yN

1 , ûi−1
1 | ui = 1)

. (1)

and decides as ûi =

{
0, if L

(i)
N (yN

1 , ûi−1
1) ≥ 0;

1, otherwise.

The SC decoding algorithm updated the LLRs by applying the
two equations (Type A and Type B) listed in (2) recursively, where
max∗ denotes the Jacobi logarithm:
max∗(x1, x2)

∆
= ln(ex1 + ex2).

Instead of keeping one path with the most likely bit estimation
in each step in SC decoding, the SCL decoding expands and selects
LC bast survival paths on the full binary-tree. With list size LC ,
SCL decoding improves the performance than SC decoding [3] and
[11].

2.3. SD and List SD Polar Decoding

Let U denote the set of all information sequences uN
1 . Let gj,i denote

the (i, j)-th entry of GN. The aim of SD decoding is to solve the
following minimization problem ûN

1 = argmin
uN
1 ∈U

∥∥ŷN
1 − uN

1 GN

∥∥2

[9]. Let D(yN
1) denote the Euclidean distance between yN

1 and the
codeword. SD algorithm enumerates all points uN

1 ∈ U that satisfy

1164978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

Type A : L
(2i−1)
N (yN

1 , û2i−2
1 |u2i−1) = max∗(L

(i)

N/2(y
N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e |u2i−1) + L

(i)

N/2(y
N
N/2+1, û

2i−2
1,e |0),

L
(i)

N/2(y
N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e |ū2i−1) + L

(i)

N/2(y
N
N/2+1, û

2i−2
1,e |1)),

Type B : L
(2i)
N (yN

1 , û2i−1
1 |u2i) = L

(i)

N/2(y
N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e |u2i−1 ⊕ u2i) + L

(i)

N/2(y
N
N/2+1, û

2i−2
1,e |u2i).

(2)

the constraint

D(yN
1) =

∥∥yN
1 − uN

1 GN

∥∥2

=
N∑
i=1

(yi −
N
⊕
j=i

(gj,iuj))
2 ≤ r0

2 (3)

where r0 is the initial radius for the search and
b
⊕
j=a

(·) is the sum-

mation over GF(2). Since GN is the a lower triangular matrix, SD
algorithm processes in a back manner from i = N to i = 1 to
find the optimal uN

1 which has the minimum Euclidean distance to
the received codeword. The average complexity of SD algorithms is
O(N3) in many scenarios [12].

Since the complexity of SD is high, LSD algorithm is proposed
[10]. LSD algorithm abandons the radius and applies BFS to keep a
list of LD candidate paths with the minimum distances. Compared
with SD algorithm, LSD has a performance loss but successfully
reduces the complexity.

3. JOINT LIST DECODING WITH SC AND SD

SCL decoding and LSD algorithms have their own tradeoff between
performance and complexity. The similarity between them is that
they are both BFS process. The differences between them are met-
ric measurement and decoding order. SCL decoding calculates LLR
as the standard metric while LSD algorithm compares the Euclidean
distance among the candidate paths. Coincidentally, the decoding or-
der of SCL decoding is from u1 to uN while LSD method decodes
from uN to u1. This fact leads to an efficient decoding method: we
apply SCL decoding and LSD algorithm simultaneously and merge
them together at the middle point. We name this decoding algorithm
as joint list decoding with SC and SD (JLSCD). Since the SCL and
LSD can decode independently at the same time, the time complexi-
ty reduced by half. In this section, we first propose JLSCD algorithm
and then carry its performance and complexity analysis.

Fig. 1. JLSCD scheme (LC = 4, LD = 8).

3.1. An Efficient Joint Decoding Scheme

Assume the middle point of the channel is M , which indicates that
SCL decoding is applied for the first bit to the M -th bit and LS-
D algorithm is applied for the last bit to the (M + 1)-th bit. Define
SCL(yN

1 , M , LC) as the SCL decoding procedure with received vec-
tor yN

1 , middle point M and list size LC . Define UC as the the output
paths set of SCL(·). Define LSD(yN

1 , M , LD) as the LSD algorithm
procedure. Define UD as the the output paths set of LSD(·). Define
distance(pi, pj) as the Euclidean distance calculation procedure be-
tween the joint path pi, pj and the codeword. Define d as the current
minimum distance parameter. The JLSCD algorithm can be listed as
follows:

Algorithm 1 JLSCD polar decoding

Require: yN
1 , M , LC , LD

1: d = +∞;
2: UC = SCL(yN

1 , M , LC);
3: UD = LSD(yN

1 , M , LD);
4: forall pi ∈ UC

5: forall pj ∈ UD

6: d = min(d, distance(pi, pj));
7: refresh ûn

1 ;
8: end for
9: end for

Ensure: ûn
1

The input parameters are yN
1 , M , LC and LD . The algorith-

m sets d = +∞ as the initialization, then perform SCL decoding
and LSD algorithm independently and simultaneously. At the mid-
dle point, dual loops are applied to find the best joint path with the
minimum distance through matching. Fig. 1 illustrates the JLSCD
scheme with LC = 4, LD = 8.

4. PERFORMANCE AND COMPLEXITY ANALYSIS

4.1. Performance Analysis

As SD algorithm enumerates all possible points, it has the best per-
formance. SC decoding performs worst for it is a greedy algorithm.
Since SCL decoding and LSD algorithm are dynamic schemes with
the list size, their performances are between SD and SC decoding.
Proposed JLSCD decoding consists of SCL decoding and LSD al-
gorithm, and the matching procedure picks up the best joint path.
Therefore, its performance is between SCL decoding and LSD algo-
rithm.

Fig. 2 indicates FER performance comparison different schemes
via simulation over binary-input additive white Gaussian noise chan-
nel. For all the five different schemes, simulations are carried out for
the (N = 32,K = 26) polar code in [2]. The information set
A is selected using the method in [13] for polar codes. The pro-
posed JLSCD scheme (blue star line) performs between SCL decod-
ing (black left triangle line) and LSD algorithm (green square line).

1165

1 1.5 2 2.5 3 3.5 4 4.5

E
b
/N

0
 (dB)

10-3

10-2

10-1

100

F
E

R

SC
SCL (L

C
= 4)

SD
LSD (L

D
= 8)

JLSCD (L
C

= 4, L
D

= 8, M = 22)

Fig. 2. FER performance comparison.(N = 32,K = 26).

Compared with the SD scheme (red dash line), the JLSCD scheme
has a less than 0.1 dB performance loss at the FER of 0.01.

4.2. Complexity Analysis

We calculate addition times, multiplication times and comparison
times as the complexity analysis of SC, SCL, SD, LSD and JLSCD
schemes.

4.2.1. Complexity of SC Decoding

In Eq. (2), there are i additions and 1 multiplication in Type A. In
Type B, there are (i− 1) additions, 2 multiplications and 1 compar-
ison. The information set determines the number of visited Type A
and Type B nodes. Here ‘visited node’ means the node we need to
calculate its LLR, and ‘non-visited node’ means the node we don’t
need to calculate its LLR because none of the information nodes
needs its value.

(1)
1 1()L y (1) 8

8 1()L y

(1)
1 8()L y

(1)
1 6()L y

(1)
1 7()L y

(1)
1 5()L y

(1)
1 4()L y

(1)
1 2()L y

(1)
1 3()L y (3) 8 2

8 1 1̂(,)L y u

(7) 8 6
8 1 1̂(,)L y u

(2) 8
8 1 1̂(,)L y u

(6) 8 5
8 1 1̂(,)L y u

(4) 8 3
8 1 1̂(,)L y u

(8) 8 7
8 1 1̂(,)L y u

(5) 8 4
8 1 1̂(,)L y u

: non-visited Type A

: visited Type B

1

1

1

1

8

8

8

8

1

1

1

1

8

8

8

8

3

6

4

7

10

13

11

14

3

6

4

7

10

13

11

14

2

5

2

5

9

12

9

12

2

5

2

5

9

12

9

12

1̂u

5û

3û

7û

2û

4û

8û

1 2 3 4ˆ ˆ ˆ ˆu u u u  

3 4ˆ ˆu u

2 4ˆ ˆu u

4û

1 2ˆ ˆu u
5 6ˆ ˆu u

6û

2û

7û

1̂u

5û

3û

6û

: non-visited Type B

: visited Type A

(1)
1 1()L y (1) 8

8 1()L y

(1)
1 8()L y

(1)
1 6()L y

(1)
1 7()L y

(1)
1 5()L y

(1)
1 4()L y

(1)
1 2()L y

(1)
1 3()L y (3) 8 2

8 1 1̂(,)L y u

(7) 8 6
8 1 1̂(,)L y u

(2) 8
8 1 1̂(,)L y u

(6) 8 5
8 1 1̂(,)L y u

(4) 8 3
8 1 1̂(,)L y u

(8) 8 7
8 1 1̂(,)L y u

(5) 8 4
8 1 1̂(,)L y u

: non-visited Type A

: visited Type B

1

1

1

1

8

8

8

8

3

6

4

7

10

13

11

14

2

5

2

5

9

12

9

12

1̂u

5û

3û

7û

2û

4û

8û

1 2 3 4ˆ ˆ ˆ ˆu u u u  

3 4ˆ ˆu u

2 4ˆ ˆu u

4û

1 2ˆ ˆu u
5 6ˆ ˆu u

6û

2û

7û

1̂u

5û

3û

6û

: non-visited Type B

: visited Type A

Fig. 3. SC decoding process (N = 8,A = {4, 6}).

Fig. 3 indicates SC decoding process of given information set
A = {4, 6}. To determine û4, û6, all the visited Type A nodes
(solid blue circle) and the visited Type B nodes (solid red circle)

are required to calculate the LLRs. Let Sac, Smc, Scc denote the
addition times, multiplication times and comparison times in SC de-
coding. In general, assume there are T1 Type A nodes and T2 Type
B nodes in SC decoding process. We have

Sac =

T1∑
j=1

iaj +

T2∑
j=1

(ibj − 1),

Smc = T1 + 2T2,

Scc = T2,

(4)

where iaj , ibj denotes the corresponding ‘i’ for j-th Type A and
Type B node.

4.2.2. Complexity of SCL Decoding

Let Sacl, Smcl, Sccl denote the addition times, multiplication times
and comparison times in SCL decoding. For SCL decoding keeps
LC candidate paths, the operation numbers should times LC . As-
sume we apply bubble sorting for the list, which adds K×LC(LC−
1)/2 comparisons. We have

Sacl = LC × (

T1∑
j=1

iaj +

T2∑
j=1

(ibj − 1)),

Smcl = LC × (T1 + 2T2),

Sccl = LC × T2 +K × LC(LC − 1)/2.

(5)

4.2.3. Complexity of SD Scheme

Let Sad, Smd denote the addition times and multiplication times in
SD algorithm. As shown in Eq. (3), each i produces (N−i) addition
times and (N − i + 1) multiplication times. Assume SD algorithm
visits totally D times on channel bits, and the bit-position of i-th
visit is ki. We have

Sad =

D∑
i=1

(N − ki),

Smd =

D∑
i=1

(N − ki + 1).

(6)

4.2.4. Complexity of LSD Scheme

Let Sadl, Smdl, Scdl denote the addition times, multiplication times
and comparison times in LSD algorithm. Since LSD algorithm is a
BFS process, it keeps a list and decodes every information bit on the
choices ‘0’ or ‘1’, and set ’0’s for frozen bits. We have

Sadl = 2×
∑
i∈A

(N − ki) +
∑
i∈AC

(N − ki),

Scdl = K × LD(LD − 1)/2,

Smdl = 2×
∑
i∈A

(N − ki + 1) +
∑

i∈AC

(N − ki + 1).

(7)

4.2.5. Complexity of JLSCD Scheme

Let SaJc, SmJc, ScJc denote the addition times, multiplication
times and comparison times in partial SCL part of JLSCD decoding.
Let SaJd, SmJd, ScJd denote the addition times, multiplication
times and comparison times in partial LSD part of JLSCD decoding.

1166

We need to obtain the partial information bits in partial SCL decod-
ing, then determine the number of visited Type A and Type B nodes.
Assume there are T ′

1 Type A nodes and T ′
2 Type B nodes in JLSCD

decoding. Let ia′
j , ib

′
j denotes the corresponding ‘i’ for j-th Type A

and Type B node. Assume K′ is the number of information bits from
the first bit to the M -th bit. Let B denote the partial information set
from M + 1-th bit to N -th bit. Let BC denote the complement of B
on {M +1,M +2, ..., N}. Let k′

i denote the bit-position for i ∈ B.
We have

SaJc = LC × (

T ′
1∑

j=1

ia′
j +

T ′
2∑

j=1

(ib′j − 1)),

SaJd = 2×
∑
i∈B

(N − k′
i) +

∑
i∈BC

(N − k′
i),

SmJc = LC × (T ′
1 + 2T ′

2),

SmJd = 2×
∑
i∈B

(N − k′
i + 1) +

∑
i∈BC

(N − k′
i + 1),

ScJc = LC × T ′
2 +

1

2
(K′ × LC(LC − 1)),

ScJd =
1

2
(K −K′)× LD(LD − 1)).

(8)

Table 1. Operation number of different schemes (N = 32, K = 26,
LC = 4, LD = 8, M = 22).

Schemes Additions Multiplications Comparisons

SC 966 450 146

SD 10, 853 11, 532 0

SCL 3, 864 1, 800 740

LSD 6, 312 6, 728 728

JLSCD SCL part 1, 848 1, 408 576

JLSCD LSD part 1, 728 1, 840 280

Table. 1 shows the number of three operations in different
schemes. Both SCL part and LSD part of JLSCD scheme have
complexity reduction compared with other schemes. We can choose
a proper M to merge them together at the same running time in real
applications.

5. VLSI IMPLEMENTATION RESULTS

SC as well as SCL hardware designs in [14–17] have log2 N stages.
Since LSD is an encoding process, it also has log2 N stages. JLSCD
scheme includes both SCL part and LSD part, the corresponding ar-
chitecture needs both SCL and LSD hardware modules. Because
there are usually more information bits in {N/2 + 1..N} than that
in {1..N/2}, the value of M is usually larger than N/2 to merge
them together at the same time. Therefore, the SCL part needs com-
plete (log2 N)-stage SCL hardware design [14], and LSD part needs
only (log2 N − 1)-stage LSD design. Our proposed JLSCD archi-
tecture applies distributed sorting algorithm [18, 19] for list sorting
both for SCL and LSD. The decoding latency is based on the larger
latency between SCL and LSD. The merging process would not in-
fluence the final latency, since the merging process of current block
and decoding process of next block implement simultaneously.

The hardware platform is set up on Altera Stratix V FPGA. Set
the quantization length of LLR as 1 sign bit, 6 integer bits and 1
decimal bit for SCL part. Tab. 2 shows SCL decoder (LC = 4),
LSD decoder (LD = 8) and JLSCD decoder (LC = 4, LD = 8,
M = 22) are all based on polar codes with (N = 32,K = 26). The
latency of our proposed JLSCD decoder costs only 54.6% compared
with SCL decoder with a 10.8% adaptive logical modules (ALMs)
increase.

Table 2. Implementation results comparison with (N = 32,K =
26,M = 22, LC = 4, LD = 8).

Decoding Module ALMs Register Latency

SCL decoder 8, 784 2, 744 174

LSD decoder 1, 228 640 268

JLSCD decoder 9, 729 3, 176 95

6. CONCLUSIONS

JLSCD scheme is proposed to reduce the time complexity. Based
on the similarities and differences of SCL and LSD schemes, the
JLSCD scheme applies these two schemes independently and si-
multaneously, then merges them together. Numerical results have
shown the complexity reduction of proposed JLSCD scheme. The
VLSI implementation results show the significant latency reduction
of proposed JLSCD decoder compared with SCL decoder with an
acceptable ALMs increase.

Acknowledgement
This work is supported in part by NSFC under grant 61501116,
Jiangsu Provincial NSF under grant BK20140636, Huawei HIRP
Flagship under grant YB201504, the Fundamental Research Funds
for the Central Universities, the SRTP of Southeast University, State
Key Laboratory of ASIC & System under grant 2016KF007, ICRI
for MNC, and the Project Sponsored by the SRF for the Returned
Overseas Chinese Scholars of MoE.

References
[1] Erdal Arıkan and Emre Telatar, “On the rate of channel polar-

ization,” in Proc. IEEE International Symposium on Informa-
tion Theory (ISIT), 2009, pp. 1493–1495.

[2] Erdal Arıkan, “Channel polarization: A method for construct-
ing capacity-achieving codes for symmetric binary-input mem-
oryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp.
3051–3073, July. 2009.

[3] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc.
IEEE International Symposium on Information Theory Pro-
ceedings (ISIT), 2011, pp. 1–5.

[4] K. Chen, K. Niu, and J.R. Lin, “List successive cancellation
decoding of polar codes,” Electronics Letters, vol. 48, no. 9,
pp. 500–501, April 2012.

1167

[5] Michael Pohst, On the computation of lattice vectors of min-
imal length, successive minima and reduced bases with appli-
cations, ACM, 1981.

[6] U Fincke and M Pohst, “Improved methods for calculating
vectors of short length in a lattice, including a complexity anal-
ysis,” Mathematics of Computation, vol. 44, no. 170, pp. 463–
471, 1985.

[7] Sinan Kahraman and M. Erturul Çelebi, “Code based effi-
cient maximum-likelihood decoding of short polar codes,” in
Proc. IEEE International Symposium on Information Theory
Proceedings (ISIT), 2012, pp. 1967–1971.

[8] Kai Niu, Kai Chen, and Jiaru Lin, “Low-complexity sphere
decoding of polar codes based on optimum path metric,” IEEE
Commun. Lett., vol. 18, no. 2, pp. 332–335, 2014.

[9] Jing Guo and Albert Guillén I Fàbregas, “Efficient sphere de-
coding of polar codes,” in Proc. IEEE International Sympo-
sium on Information Theory (ISIT), 2015, pp. 236–240.

[10] S. A. Hashemi, C. Condo, and W. J. Gross, “List sphere de-
coding of polar codes,” in Asilomar Conference on Signals,
Systems and Computers, 2015, pp. 1346–1350.

[11] Kai Niu and Kai Chen, “CRC-aided decoding of polar codes,”
IEEE Commun. Lett., vol. 16, no. 10, pp. 1668–1671, 2012.

[12] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm
i. expected complexity,” IEEE Trans. Signal Process., vol. 53,
no. 8, pp. 2806–2818, 2005.

[13] Irina Tal and Alexander Vardy, “How to construct polar codes,”
IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6562–6582, 2013.

[14] Chuan Zhang, Bo Yuan, and Keshab K. Parhi, “Reduced-
Latency SC polar decoder architectures,” in Proc. IEEE In-
ternational Conference on Communications (ICC), 2011, pp.
3471–3475.

[15] Chuan Zhang and Keshab Parhi, “Low-latency sequential and
overlapped architectures for successive cancellation polar de-
coder,” IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2429–
2441, 2013.

[16] Chuan Zhang, Xiaohu You, and Jin Sha, “Hardware architec-
ture for list successive cancellation polar decoder,” in Proc.
IEEE International Symposium on Circuits and Systems (IS-
CAS), 2014, pp. 209–212.

[17] Menghui Xu, Xiao Liang, Chuan Zhang, Zhizhen Wu, and X-
iaohu You, “Stochastic BP polar decoding and architecture
with efficient re-randomization and directive register,” in Proc.
IEEE International Workshop on Signal Processing Systems
(SiPS), 2016, pp. 315–320.

[18] X. Liang, J. Yang, C. Zhang, W. Song, and X. You, “Hardware
efficient and low-latency CA-SCL decoder based on distributed
sorting,” in Proc. IEEE Global Communications Conference
(GLOBECOM), Dec 2016, pp. 1–6.

[19] Yifei Shen, Chuan Zhang, Junmei Yang, Shunqing Zhang, and
Xiaohu You, “Low-latency software successive cancellation
list polar decoder using stage-located copy,” in Proc. IEEE
International Conference on Digital Signal Processing (DSP),
2016, pp. 84–88.

1168

