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Abstract—The sparse array design for adaptive beamforming
has been recently formulated into combinatorial antenna selection
problems, which belong to notorious NP-hard problems. As the
commonly deployed convex relaxation algorithms are susceptible
to local optima, several trials with different initial points are con-
ducted for the global optima. Moreover, the high computational
load of optimization techniques prohibits the real-time adaptive
array reconfiguration. In this work, we propose to utilize machine
learning algorithms, specifically support vector machine (SVM)
and artificial neural network (ANN), for solving combinatorial
antenna selection problems. Numerical examples are presented
to validate the effectiveness and efficiency of machine learning
algorithms for sparse array design. Moreover, the SVM based
antenna selection is robust against DOA estimate uncertainties.
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I. INTRODUCTION

Adaptive beamforming is capable of spatial filtering and
finds exensive applications in radar, sonar, wireless communi-
cations, radio astronomy, and satellite navigation, to list a few
[1]–[5]. Although the nominal array configuration is uniform,
sparse arrays have recently emerged to play a fundamental role
in various sensing systems involving multi-antenna transmitters
and receivers [6]–[8]. It has been shown that sparse arrays
with a given number of antennas placed at an optimum
subset of grid locations, connecting with the Radio-Frequency
(RF) front-end receivers, can preserve a large aperture while
reducing system complexity [9]–[13]. The main task of sparse
array design is, in essence, to decide on where to place a given
number of sensors to deliver optimum performance. Different
optimization metrics lead to differed sparse array configura-
tions [14]–[23]. From signal enhancement and interference
suppression perspective, an optimum array configuration is
the one that yields maximum signal-to-interference-plus-noise
ratio (MaxSINR).

Whether the problem is cast as optimum placement of a
given number of antennas or equivalently selecting a subset
of antennas to connect with RF front-end receivers, the under-
lying problem falls into the framework of antenna selection.
The antenna selection perspective of the problem relies on
low-complexity RF switches [13], [24], with the fundamental
goal of reducing hardware cost associated with expensive RF
chains. The antenna selection was formulated into combina-
torial optimization problems in terms of the MaxSINR and
solved by convex relaxation algorithms [25]–[28]. The high
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computational complexity of optimization techniques may not
be suitable for adaptive array reconfiguration applications.
Moreover, relaxation techniques of solving non-convex opti-
mization problems are susceptiable to local optima. Several
runs with different initial points are conducted for search of the
global optima, which siginificantly increases the requried com-
putational time. In this paper, we propose to utilize machine
learning (ML) algorithms, specifically support vector machine
(SVM) [29], [30] and Artificial Neural Network (ANN) [31],
[32], to achieve optimum sparse array reconfiguration. The
flowchart of ML based antenna selection strategy is illustrated
in Fig. 1. The SVM and ANN are completely trained using
a large set of training data from all possible scenarios. After
training, a Capon beamformer is first utilized to sense the oper-
ating environment and extract features, such as the number and
directions of arrival (DOAs) of interferences. The SVM/ANN
then decides the status of each antenna (either selected or
discarded) according to the features provided by Capon beam-
former. It is shown that the ML based selection algorithms
are capable of quickly obtaining the global optimum solution,
making them most suitable for rapidly changing environments.
Moreover, simulation results also demonstrate the robustness
of the SVM algorithm against DOA estimate uncertainties.
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Fig. 1. Flowchart of machine learning based antenna selection.

The rest of this paper is organized as follows: We formulate
the mathematical model in section II. The optimization and ML
based sparse array design methods are examined in sections III
and IV, respectively. Simulation results in section V validate
the utility of ML algorithms for sparse array design. Finally,
conclusions are provided in section VI.

II. MATHEMATICAL MODEL

Consider a linear array of N isotropic antennas with posi-
tions specified by multiple integer of unit inter-element spacing
pnd, pn ∈ N, n = 1, . . . , N . The symbol N denotes the set of
integer numbers. Suppose that a single source is impinging on
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the array from directions φs and q strong interfering signals
are arriving from directions {φ1, . . . , φq}. The corresponding
steering vectors are,

s = [ejk0p1d cosφs , . . . , ejk0pNd cosφs ]T , (1)
vl = [ejk0p1d cosφl , . . . , ejk0pNd cosφl ]T , l = 1, . . . , q,

where the wavenumber is defined as k0 = 2π/λ with λ being
the wavelength and T denotes the transpose operation. The
received signal at time instant t is given by,

x(t) = s(t)s + Vv(t) + n(t), (2)

where V = [v1, . . . , vq] is the interference array manifold
matrix with the full column rank. In the above equation,
s(t) ∈ C and v(t) ∈ Cq are, respectively, the statistically
independent source and interfering signals, n(t) ∈ CN denotes
the received Gaussian noise vector. The symbol C denotes
the set of complex numbers. The Capon beamformer, which
minimizes the output variance while keeping the desired signal
distortionless [33], is wc = R−1

n s, where Rn = VCvVH +σ2
nI

is the interference plus noise covariance matrix with Cv =
E{v(t)vH(t)} denoting the interference correlation matrix, σ2

n
the noise power level and H stands for the Hermitian operation.
The output SINR of the Capon beamformer can be expressed
as [25], [26],

SINR = σ2
ssHR−1

n s, (3)
≈ SNR{sH [I− V(VHV)−1VH ]s},
= NSNR(1− |α|2),

where σ2
s denotes the power of the source signal, SNR =

σ2
s/σ

2
n is the input signal-to-noise ratio. In the second

line of Eq. (3), we make the assumption that the inter-
ferences are much stronger than white noise, which occurs
frequently in satellite navigation and radio astronomy. The
spatial correlation coefficient (SCC) α is defined as |α|2 =
(1/N)sHV(VHV)−1VHs. We can observe from Eq. (3) that
the output SINR depends only on the squared SCC value
for a given number of antennas. The sparse array design
for maximizing the output SINR is tantamount to that for
minimizing the SCC value.

III. OPTIMIZATION BASED SPARSE ARRAY DESIGN

The sparse array design can be cast as selecting K out
of N candidate antennas placed on uniform grid points with
half wavelength spacing. The positions of the K antennas are
freely determined by the optimization technique, which in this
case is the Capon beamformer. Denote an antenna selection
vector z = [zi, i = 1, . . . , N ] ∈ {0, 1}N with “zero” entry
for a discarded antenna and “one” entry for a selected one.
As mentioned in section II, the optimum sparse array can be
configured through minimizing the SCC value, that is, [26]

min
z

log|VHdiag(z)V| − log|VHs diag(z)Vs|,

s.t. 1T z = K, z ∈ {0, 1}N , (4)

where s.t. stands for “subject to”, diag(z) is a diagonal matrix
with the vector z populating along the diagonal, Vs = [V, s],
and | · | denotes the determinant operation. The difficulty of
solving the problem in Eq. (4) is twofold: the non-convexity of
the objective function and boolean constraints of the selection
variable z. In order to solve the problem, the objective function

is approximated by its affine upper bound iteratively and the
boolean constraints are relaxed to a box constraint 0 ≤ z ≤ 1
[26]. The antenna selection in the (k+1)th iteration can be
formulated based on the solution from the kth iteration as,

min
z

∆gT (z(k))(z− z(k))− log|VHs diag(z)Vs|,

s.t. 1T z = K,

0 ≤ z ≤ 1, (5)

where ∆g(z(k)) is the gradient of the concave function
log|VHdiag(z)V| evaluated at the point z(k). That is,

∆g = [vHr,i(VHdiag(z(k))V)−1vr,i, i = 1, . . . , N ]T ,

with vr,i denoting the ith column vector of the matrix VH .
Note that the iterative relaxation in Eq. (5) is a local heuristic
and its performance depends on the initial point z(0). It is,
therefore, typical to initialize the algorithm with several feasi-
ble points z(0) and find the one with the minimum objective
value over the different runs. The interior point method can be
utilized to solve the optimization problem with a computational
complexity of order O(n3.5L2), where n and L are the number
of variables and bitlength, respectively.

IV. MACHINE LEARNING BASED SPARSE ARRAY DESIGN

Although convex relaxation and optimization are effective
in most cases, their susceptibility to local optima and high
computational complexity prohibit the practical implementa-
tion. We investigate the utilization of ML algorithms for sparse
array design in this section. Below, we first summarize two
principal ML techniques and then describe the formulation of
antenna selection problems into the framework of ML.

A. Support Vector Machine

The support vector machine (SVM) is known as the max-
imum margin classifier, which calculates the optimum hyper-
plane uT x+ b with the maximal margin of separation between
the two classes. Given a set of training data xi, i = 1, . . . , L
and the corresponding labels yi ∈ {−1, 1}, i = 1, . . . , L. The
hyperplane can be calculated as follows,

min
u,b

1

2
‖u‖2 + C

L∑
l=1

εl, (6)

s.t. yi(uT xi + b) ≥ 1− εl, l = 1, . . . , L,

εl ≥ 0, l = 1, . . . , L,

where C is a trade-off parameter. The Lagrangian dual of the
problem in Eq. (6) can be expressed as the following quadratic
programming form,

max
α

1

2
αTHα− 1Tα, (7)

s.t. αT y = 0, 0 ≤ α ≤ C,
where y = [yi, i = 1, . . . , L]T and H = GTG with
G = [y1x1, . . . , yLxL]. In order to increase the Vapnik-
Chervonenkis (VC) dimension of the SVM classifier, which is
defined as the maximum number of points that can be labelled
in all possible ways, kernel mapping, κ : X → F from data
space X to a dot product feature space F , can be employed.
The matrix H in Eq. (7) with kernel can be rewritten as,

Hij = yiyjκ(xi, xj). (8)
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B. Artificial Neural Network
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Fig. 2. The structure of a five-layer artificial neural network.

The structure of the employed artificial neural network
(ANN) is shown in Fig. 2, which comprises five layers, an
input layer, three hidden layers and an output layer. Let nl in-
dicate the number of layers and sl denote the number of nodes
in layer l. We write a(l)k to denote the activation of neuron k in
layer l and for l = 1, a(1)i = xi, i.e. the ith feature of the input
data vector x. The circles labelled “+1” are called bias units,
and correspond to the intercept term. The neural network has
parameters θ = (W(1), b(1),W(2), b(2),W(3), b(3),W(4), b(4)),
where W(l)

ij denotes the weight associated with the connection
between neuron i in layer l and neuron j in layer l+ 1. Thus,
W(1) ∈ Rsl×sl+1 . Given a fixed setting of the parameters θ,
out neural network defines a hypothesis hθ(x) that outputs the
prediction a(5). Specifically, the forward propagation that this
neural network represents is given by,

a(l+1) = g(W(l)a(l) + b(l)), l = 1, . . . , nl − 1 (9)

where the activation g(x) is a sigmoid function. The neural
network parameters can be trained by backward propagation
using batch gradient descent algorithm.

C. Sparse Array Design using ML

The sparse array design for Capon beamforming pursues
the detection of the source from a specified DOA given known
directions of interferers. Antenna selection can be modelled
as classification problems, where each antenna is labelled by
two classes, “selected” and “discarded”. The training data x
and y under the two strategies can be generated either by
enumeration or optimization described in section III for every
possible scenario, characterized by the DOA of the source sig-
nal, the number q and DOAs of interferences. After a complete
training, Capon beamformer can first sense the environment
and extract feature data x, based on which the well-trained
machine then determines the status of all antennas in practical
applications. The selected antennas compose the optimum
sparse array corresponding to the operating environment. Note
that the definition of feature space X is different for the SVM
and the ANN, the detailed description is as follows.

The feature space X of the SVM is defined as xl =
[φs, φ1, . . . , φq], then the dimension of the feature space is
q + 1 with the feature value within the range of [0, 180]. The
classification variable yi ∈ {−1, 1}, i = 1, . . . , N with value
−1 denoting discarded antenna and 1 selected. We train each

antenna separately and obtain the SVM parameters αn and
bn, n = 1, . . . , N . Denote x as the sensed electromagnetic
environment, we then predict the status of each antenna
according to the following formula,

L∑
l=1

αnl ylκ(xl, x) + bn
{
> 0 then y = 1

< 0 then y = −1.
(10)

We employ Gaussian kernel with bandwidth τ in this paper,
which is defined as

κ(x1, x2) = exp
(
−‖x1 − x2‖22

τ

)
. (11)

The Gaussian kernel has an theoretical infinite VC dimension.

For the ANN algorithm, we define the feature space X
as xl = {0, 1}180×1 with value 1 indicating a signal arriving
from the corresponding direction. Thus the dimension of the
feature space for the ANN is 180 and the feature vector x
is sparse with “one” entries only corresponding to the source
and interference arrival angles. The classification variable is
defined as yi ∈ {0, 1} with value 0 denoting discarded antenna
and 1 selected. Different the separate training of SVM, we train
all the N antennas at the same time for the ANN and obtain
the parameters θ. For a new feature input x, the following
classification is made,

y = g
{

W(4)
[
W(3)[W(2)(W(1)x + b(1)) + b(2)] + b(3)

]
+ b(4)

}
.

Randomized initialization of the parameters W and b is utilized
and serves the purpose of symmetry breaking.

V. SIMULATIONS

In this section, we consider K = 8 available antennas
and N = 16 uniformly spaced positions with an inter-element
spacing of d = λ/2..

A. Validation of Optimum Sparse Array

Assume that there are two interfering signals arriving from
φ1 = 58◦, φ2 = 120◦ relative to the endfire direction with INR
being 20dB. A single source is impinging on the array from
φs = 64◦ with SNR being 0dB. Note that there are totally
C8

16 = 12870 different sparse array configurations. We enu-
merate all the different sparse arrays for Capon beamforming
and calculate the output SINR, which is plotted in Fig. 3 in
an ascending order. The structure of the optimum 8-antenna
sparse array is presented in Fig. 4. The difference in the SINR
offerings of different sparse arrays is clearly seen from Fig. 3.
Thus, different array configurations play a significant impact
on the Capon beamformer’s performance.

B. Validation of ML Algorithms

Consider a signal arriving from the angular range Φs ∈
[60◦ ∼ 120◦] and two strong interfering signals arriving
from the angular ranges Φ1 ∈ [5◦ ∼ 55◦] and Φ2 ∈
[125◦ ∼ 175◦], respectively. The 8-antenna optimum sparse
array is constructed from a 16-antenna uniform linear array. We
calculate the optimum sparse array for each possible scenario
using either emuneration or optimization based techniques
and prepare the feature data according to the description in
section IV-C, with which we then train both the SVM and
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Fig. 3. Output SINR of all sparse array Capon beamformers.
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Fig. 4. The optimum 8-antenna sparse array (a). Filled circles denote selected
locations and crosses denote discarded.

ANN algorithm. Note that there are N = 16 independent
SVM classifiers with parameters [αn, bn], n = 1, . . . , N ,
while there is only one ANN classifier with one parameter
θ = [W(1), b(1), . . . ,W(4), b(4)]. The number of neurons for
the first, second and third hidden layers are s2 = 25, s3 = 50
and s4 = 25, respectively. The input and output layers have
s1 = 180 and s5 = 16 neurons. The feature space dimension
of the SVM classifier is 3, i.e., xi = [φs, φ1, φ2], whereas
the feature space dimension of the ANN classifier is 180, i.e.,
xi ∈ {0, 1}180 with one entries corresponding to the DOAs of
source and interferences. The training data of the first antenna
is illustrated in Fig. 5. Clearly, it is impossible to distinguish
the two sets of points in the original 3-dimensional space. Both
the SVM and ANN can implement a series of transformation
to project the data onto a higher dimensional feature space,
where the two sets of points can be easily separated.

We compare the classification accuracy and computational
time among the optimization, the ML based method and the
table search in Table I. It is clear that both the SVM and ANN
algorithms exhibit much higher accuracy than the optimization
method. Although the optimization does not guarantee the
global optimum solution, it can return a satisfactory sub-
optimal solution as shown in [25], [26]. No doubt that the ac-
curacy of table search method is always 100 percent, however,
its searching time will increase dramatically with the feature
space dimension. After a complete training, the SVM and ANN
only requires simple matrix multiplication for classification,
thus exhibiting much faster computational speed than the other
two methods. The SVM is slower than the ANN as the kernel
computation is computationally involved, whereas the training
time that the ANN takes is much longer than the SVM. The
Accuracy of the ANN can be further improved by adding more
complicated hidden layer, such as convolution neurons.

Next, we consider a pragmatic scenario where the estimated
DOAs of source and interferences do not exactly coincide with
the training set. This can happen when there are possible biases
and perturbations in the DOAs due to platform motion. Assume
that the estimated DOAs of the source and interferences are
deviated from the training set of integer angles. We set them
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Fig. 5. The illustration of training data for the first antenna using SVM. The
cross denotes the label -1, while the dot denotes the label 1.

TABLE I. THE CLASSIFICATION ACCURACY AND COMPUTATIONAL
TIME OF FOUR METHODS UNDER THE UAC AND RAC.

Method Accuracy % Computational Time (sec)
Opt 64.3 7.17

SVM 100 0.09
ANN 97.08 2.21e-4
Table 100 5.6

as φs = 65.5◦, φ1 = 45.4◦, φ2 = 125.6◦. The SVM is still
capable of returning the true optimum sparse array, which is
plotted in Fig. 6 (b). However, the table-search based method
approximate the off-grid angles to φs = 66◦, φ1 = 45◦, φ2 =
126◦ and return the corresponding sparse array, as plotted in
Fig. 6 (c). The structure difference between the two sparse
arrays (b) and (c) clearly demonstrate the robustness of the
SVM based antenna selection method against DOA estimate
uncertainties.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(b) optimum sparse array for off-grid DOAs by SVM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(c) optimum sparse array for off-grid DOAs by table search

Fig. 6. The 8-antenna sparse arrays returned by the SVM and table search.

VI. CONCLUSIONS

We proposed to utilize the two principal machine learning
algorithms, namely support vector machine and artificial neural
network, to solve the combinatorial antenna selection problems
for optimum sparse array design. Numerical examples demon-
strated the utility of machine learning algorithms for optimum
sparse array design. Their high accuracy, fast computational
speed and robustness against DOA uncertainties manifest the
ML algorithms a desirable candidate solution to adaptive
sparse array reconfiguration in a rapidly changing environment.
How to reduce the training time of ML algorithms for large-
scaled arrays in complicated operating scenarios is important
and will be the future research topic.
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