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ABSTRACT

Convolutional neural networks (CNNs) are widely used in
various intelligent tasks. However, the huge computational
complexity of CNNs makes it hard to be implemented in
many real-time embedded devices. Various methods have
been employed to reduce the model size of CNNs, where
the Canonical Polyadic Decomposition (CPD) has shown its
capability to reduce both the computational complexity and
the storage requirement with negligible accuracy loss. In this
paper, an efficient configurable hardware architecture called
EadNet is proposed for CPD-CNNs. In detail, to minimize the
on-chip memory access, different data reuse patterns are first
analyzed. Based on the chosen optimal reuse scheme, a much
improved computation flow is also developed for efficiently
caching activations. The EadNet is implemented with a
TSMC 90nm CMOS technology. The implementation results
indicate that EadNet achieves considerable improvements on
computation efficiency compared to the state-of-the-art CNN
accelerator architectures.

Index Terms— Deep Learning, Convolutional Neural
Networks (CNNs), CP Decomposition, VLSI

1. INTRODUCTION

Convolutional neural networks (CNNs) have achieved re-
markable performance in many fields, such as computer
vision and speech recognition [1–3]. The improvement of
model capability of CNNs leads to more convolutional lay-
ers, which incurs higher computational complexity and more
memory requirement. Dedicated hardware architectures for
CNNs are necessary for power stringent embedded applica-
tions. Due to limited hardware resource and memory band-
width, embedded hardware accelerators suffer from the huge
computational complexity of modern deep CNNs.

For the purpose of speeding up CNNs, some decomposi-
tion methods have been proposed for CNNs [4–10]. Among
them, Canonical Polyadic decomposition (CPD) was pre-
sented in [5, 7]. The weight size and computational complex-
ity can be reduced by 6.98x and 3.53x, respectively, with only
1.42% accuracy drop, which is known as the state-of-the-art
performance among decomposed CNNs. Hence, deploying

CPD-CNNs on processors or specific hardware accelerators
is necessary.

In CPD-CNNs, the decomposed comvolutional layer will
be split into several low rank sub layers with less weight size.
On the other hand, the total number of activations are in-
evitably increased due to the generated sub layers. Therefore,
accelerators designed with CPD should focus on optimizing
the activation access from memory. However, many current
accelerators pay much attention on minimizing the weight ac-
cess [11–21]. An architecture with reconfigurable computa-
tion patterns was presented in [11], the memory access was
analyzed and a hybrid reuse pattern was proposed. Chen et
al. [12] proposed a row stationary data flow which was used
for CNNs on a spatial architecture. A data flow which fused
the processing of multiple CNN layers with minimal DRAM
access was proposed in [13]. Directly applying current ar-
chitectures to CP-decomposed CNNs will incur unnecessary
on-chip memory and extra data access.

In this paper, the structural characteristics of decomposed
CNNs are explored and different data reuse schemes are ana-
lyzed to develop the best data reuse scheme for CPD-CNNs.
Based on the chosen reuse scheme, a much improved compu-
tation flow which can efficiently cache activations and reduce
the size of on-chip memory is proposed. Combined with the
CPD, the presented computation flow also eases the require-
ment of DRAM bandwidth. Finally, based on selected reuse
scheme and computation flow, an efficient hardware architec-
ture called EadNet is proposed to support various convolution
kernel sizes. To the best of our knowledge, EadNet is the first
dedicated hardware architecture for CPD-CNNs. The imple-
mentation results demonstrate that EadNet has 4.9 to 9 times
better computation efficiency compared to the state-of-the-art
CNNs architectures.

2. BACKGROUND

For a typical convolutional layer, let I and O denote the input
and output feature maps with Cin and Cout channels, respec-
tively. Let W and H denote the width and height of each
output feature map, respectively. For cout = 0, 1, · · · , Cout,
w′ = 0, 1, · · · ,W − 1, h′ = 0, 1, · · · , H − 1, an output acti-
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vation

Ocout,w′,h′ =

d∑
i=1

d∑
j=1

Cin∑
cin=1

Kcout,cin,j,iIcin,wj ,hi , (1)

where K is a 4D kernel tensor of size d× d×Ci×Co. Here,
each convolution kernel is a d× d matrix.

By employing the R-rank CPD, K can be decomposed
to three low rank tensors: Khw,Ks, and Kt. The sizes of
Khw,Ks, and Kt are d×d×R, R×cin and cout×R, respec-
tively. Hence, a convolutional layer can be decomposed into
three inter concatenated convolutional layers (ICLs) shown as
follows:

Isr,w,h =
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cin=1

Ks
r,cinIcin,w,h

Ishw
r,w′ ,h′ =
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i=1
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j=1

Khw
r,i,jI

s
r,wj ,hi

O(cout, w
′
, h

′
) =

R∑
r=1

Kt
cout,rI

shw
r,w′ ,h′

, (2)

where Is and Ishw are the outputs of the first two ICLs.
Ks and Kt are both 1 × 1 convolutional kernels. For the
calculation of Ishw, it should be noted that the i-th output
feature map will be connected to only the i-th input feature
map [7]. Based on the CPD method, the compression rate of
the AlexNet is shown in Tab. 1.

Table 1. Performance of CPD-CNNs [7].
Top-5 (%) Weights (M) Comp Cost (M)

AlexNet 79.95 61.0 724
CPD-CNNs 78.53 8.7 205

3. EFFICIENT ARCHITECTURE FOR CPD-CNNS

As mentioned in [12], the energy consumption of a CNN
processor is mainly attributed to the large amount of com-
putations and memory accesses. CPD can lead to significant
reduction in both the computational complexity and model
size of a CNN. However, as shown in Eq. (2), CPD signifi-
cantly increases the number of generated activations during
the decomposition procedure, resulting in potential more data
movements between memory and computation units when
hardware implementations are considered. In this paper, for
CPD-CNNs, an efficient computation flow is proposed to
enable through reuse of output activations of ICLs.

3.1. Data Reuse

Data reuse [11], which includes input reuse, output reuse,
weight reuse, is a common approach to eliminate redundant

memory access for various CNN processors or accelerators.
In this work, by analyzing the model structure of CPD-CNNs,
it is found that reusing output activations can minimize both
SRAM and DRAM accesses when the hardware implementa-
tion of a CPD-CNN is considered. In more details, different
reuse schemes are compared as follows.

Considering limited on-chip hardware resource, feature
maps are tiled during processing to reduce the on-chip stor-
age and bandwidth requirement. Input feature maps with a
size of H×W ×Nin are tiled as TH ×TW ×Tin. For output
feature maps, the size and the tiled size are R × C × Nout

and TR × TC × Tout, respectively. The comparisons between
different reuse schemes are shown below1:

Weight Reuse (WR): The fetched weights are fully uti-
lized before fetching next batch of kernel weights. Partial
sums need to be read and written repetitively between com-
putation units and on-chip buffers. The times of data accessed

MTWR
w = d R

TR
ed C

TC
e, MTWR

i = dNout

Tout
e,

MTWR
o = 2(dNin

Tin
− 1e), MTWR

iDRAM = 1,

(3)

where MTWR
w , MTWR

i and MTWR
o denote the times of

SRAM accesses of weights, inputs and outputs, respectively.
MTWR

iDRAM denotes the DRAM access of input activations.
Output Reuse (OR): Tout tiled partial sums are reused

and stored in registers of MACs until all input feature maps
are fetched and processed. The main difference between out-
put reuse and weight reuse occurs in MTOR

o . The times of
output activation accesses of output reuse are MTOR

o = 1.

WR

OR

IR WR

OR

IR

Fig. 1. Comparison of normalized SRAM accesses of differ-
ent convolutional layers.

Input Reuse (IR): The memory access of input reuse is
close to that of output reuse. However, writing partial sums
to on-chip buffer would incur extra power consumption.

When the number of activations is much larger than
weights and MTWR

o is larger than MTOR
i , output reuse is

better than other reuse schemes. For CPD-CNNs, the number
of activations is usually larger than that of weights. For exam-
ple, the total number of activations is 8.3x larger than that of

1For simplicity, we assume that [TH , TW ] equals [TR, TC ] and Tin ×
TH × TW 6 B, where B denotes the on-chip buffer of input activations.
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weights in convolutional layers of CPD-AlexNet2. Besides, it
is worth mentioning that weight reuse scheme was employed
in many works to avoid repeatedly access of the same weight
from DRAM. For CPD-CNNs, the weights of convolutional
layers after decomposition could be stored on-chip if the
compression ratio is large enough. The comparison of the
numbers of SRAM accesses for CPD-AlexNet under various
reuse schemes is shown in Fig. 1. It can be concluded that
output reuse scheme is more suitable for CPD-CNNs.

3.2. Computation Flow

During the computation of adjacent ICLs, off-chip DRAM
accesses are needed to obtain the activations based on current
popular reconfigurable CNN processor architectures, which
usually send all output feature maps to DRAM before per-
forming the next convolutional layer. To avoid extra DRAM
access and reduce the on-chip memory for caching activa-
tions, an efficient computation flow for CPD-CNNs is pro-
posed in this section. In detail, the special structure of CPD-
CNNs is analyzed first. For original CNNs, the computa-
tion of each output feature map needs all input feature maps,
which means Nin tiled feature maps are used to process the
next layer. However, for CPD-CNNs, during the calcula-
tion of Ishw, the i-th output feature map will be connected
to only the i-th input feature map as shown in Eq. (2). Hence,
the obtained Is can be immediately used to compute Ishw
rather than being written into an SRAM. The proposed ef-
ficient computation flow is illustrated in Fig. 2(a). Assuming
the number of processing arrays (PAs) is NP and each PA
takes charge of the computation of an output channel. The
proposed computation flow is described as follows.

Step1. Before computing a convolutional layer, Nin tiled
input feature maps are read to on-chip buffer from DRAM.
These Nin maps are sent to PAs in serial to get NP tiled fea-
ture maps of Is. During this step, convolutions with 1 × 1
kernels are employed.

Step2. According to Eq. (2), the NP tiled Is are directly
used for the computation of Ishw rather than being buffered.
NP tiled maps of Ishw will be obtained and sent to on-chip
buffers. PAs are used for the calculation of Is and Ishw iter-
atively until all R tiled feature maps of Ishw are calculated.
To avoid large on-chip memory and extra DRAM access, only
R×TH×TW activations of Ishw are computed and buffered.
During this step, convolutions with d × d kernels are per-
formed.

Step3. After all R tiled maps of Ishw are gotten, Nout

tiled output feature maps will be calculated and sent to off-
chip DRAM sequentially. Meanwhile, a new batch of tiled
feature maps of I are fetched from DRAM during Step3 to re-
duce the requirement of bandwidth of DRAM. The proposed
computation flow will jump to Step1 after finishing Step3.

2The trained model and source code is provided by Marcella Astrid, an
author of [7]. ImageNet is used as dataset.

The above described process will be repeated for d H
TH
ed W

TW
e

times to finish the calculation of a decomposed convolutional
layer. In order to reduce the inference time, the DRAM
bandwidth should be large enough so that the new batch of
activations can be loaded into the on-chip buffers before the
calculation of Nout tiled output feature maps is finished.
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Fig. 2. Data Flow. (a) The computation flow of EadNet. Col-
ored small blocks denote tiled activations. Feature maps with
stripes mean that these maps are sent to on-chip buffer after
calculation. (b) Computation patterns. The colored inputs are
sent to the MAC with the same color in serial.

3.3. Hardware Architecture and Computation Pattern

The efficient hardware architecture for CPD-CNNs, namely
EadNet is presented in this section as shown in Fig. 3. The
convolution weights can be stored on-chip due to the appli-
cation of CP decomposition. The Weight Buffer unit is an
SRAM which stores all convolution weights. For each convo-
lutional layer, the size of weights is R(Nin+Nout+d2). The
Activation Buffer unit stores temporary activations. Assum-
ing that Bin tiled input feature maps are buffered, the total
size of the activation buffer is Bin×TH×TW . If Bin ≥ Nin,
each activation will be read from DRAM only once. Other-
wise, each activation will be read dNout

Tout
e times. Each Tiled

Registers (TR) unit stores a TH × TW tiled feature map. In
this work, Tin TR units are employed.

Each PA unit contains TR × TC Multiply Accumulation
Unit (MAC). PA is used for all computations in convolutional
layers. These PAs can be configured to support different
kernel sizes to adapt various networks. Fig. 2(b) illustrates
two computation patterns for d × d and 1 × 1 convolution,
respectively. A output pixel is assigned to a single MAC.
The needed inputs are sent to the MAC in serial by the order
shown in Fig. 2(b), where corresponding inputs and MACs
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Table 2. Hardware Resources And Performance Evaluated On AlexNet*.

Layer
Technology

(nm)
Area

(mm2)
SRAM
(KB)

Frequency
(MHz)

MACs
Num.

Power
(mW)

Ttyp

(TOP/s)
BW

(GB/s)
Efficiency

(layers/s/MAC)
Normalized
Comparison†

[12] CONV2 65 12.25 - 200 168 288 0.067 - 0.57 1
[11] CONV2 65 16 - 200 512 - 0.205 - 0.81 1.42

EadNet CONV2 90 6.11 150 600 256 286 3.049 2.76 3.98 6.98

[12] CONV3 65 12.25 - 200 168 266 0.067 - 1.01 1
[11] CONV3 65 16 - 200 512 - 0.205 - 1.13 1.12

EadNet CONV3 90 9.05 212 700 256 507 3.19 2.62 10.28 9.10
* Decomposition ranks are 154 and 153 for CONV2 and CONV3, respectively. The supply voltage is 1.0V. Precision is set as 16-bit fixed-point.
† This column is normalized Efficiency for better comparison.
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Fig. 3. Overview of architecture. Blocks colored with white
denote the computation units, dark blocks are used to repre-
sent on-chip buffer.

share the same color. When kernel size is less than the num-
ber of MACs in a PA, the outputs can be directly computed.
Otherwise, four PAs will be combined together to get a joint
PA. The utilization ratio of PAs will not drop by doing so.

4. RESULTS AND COMPARISONS

The hardware complexity and performance of EadNet are
evaluated in this section. For the proposed architecture, Tin,
TH , and TW are set to 16, 4 and 4, respectively. The number
of PAs is 16, where each PA contains 16 MACs. Weights of
different convolutional layers are stored on-chip.

According to Section. 3.2, the requirement of DDR band-
width can be eased due to CPD and the proposed efficient
computation flow. In Step 3, the calculation of O needs at
least CoutR

Tin
cycles, which means the requirement of DDR

bandwidth is BW = 2(Cin+Cout)THTWTinf
CoutR

, where f de-
notes the frequency. In general, Cin is no more than Cout,
so BW ≤ 4THTWTinf

R .
Since none architectures have been proposed for CPD-

CNN before, two representative works [11, 12] are used for
comparison as shown in Table 2. Two layers of AlexNet with
the highest computational complexity are chosen for evalu-
ation. Activation sparsity is utilized to reduce power con-
sumption in [12]. In this work, the sparsity is not consid-
ered. However, activation/weight sparsity and the decompo-

sition can be seen as complement to each other. Combining
these two schemes can produce more compact models. Tpeak

denotes the peak throughput and Ttyp is used to denote the
throughput of corresponding convolution without decompo-
sition. Tpeak and Ttyp are given by the following equations:

Tpeak = (Nm +Na) ∗ f, Ttyp =
Tpeak

ratiocp
, (4)

where Nm and Na denote the number of multipliers and
adders in all PAs, respectively. The compression ratio of
operations is denoted by ratiocp. The efficiency of EadNet in
Tab. 2 does not take the ReLU and pooling into consideration.

Some works without layer-wise results or evaluated on
different dataset are compared as below: Du et al. [14] in-
troduced a methodology of configuring the large-sized ker-
nel computation with many small-sized kernels computation,
which can be seen as a complement of our computation pat-
tern. Since only LeNet was evaluated in [14] whose compu-
tational complexity and model size are relatively small, the
performance on modern CNNs are unknown. In addition, no
efficient network compression scheme was employed, which
leads to more memory requirement and higher computational
complexity. In [15], a dual-range MAC was developed for
low-power convolution. PCA was employed to compress the
kernel data, which resembles ours. However, the computa-
tional complexity is not reduced.

5. CONCLUSION

In this paper, carefully selected data reuse scheme and an
improved computation flow are developed for CPD-CNNs.
Moreover, an efficient configurable hardware architecture
called EadNet is proposed for CPD-CNNs. For EadNet, the
number of memory access is minimized and various kernel
sizes are supported. The proposed architecture is coded with
RTL and synthesized under a TSMC 90nm CMOS technol-
ogy. The implementation results show that the EadNet is
many times better than representative CNN architectures in
terms of computation efficiency.
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