
A NOVEL SELECTIVE ACTIVE NOISE CONTROL ALGORITHM TO OVERCOME
PRACTICAL IMPLEMENTATION ISSUE

DongYuan Shi∗, Bhan Lam and Woon-Seng Gan

Digital Signal Processing Laboratory, School of Electrical and Electronic Engineering,
Nanyang Technological University, SINGAPORE

ABSTRACT

Selective active noise control (SANC) is a method to se-
lect a pre-trained control filter for different primary noises,
instead of using conventional real-time computation of the
control filter coefficients. SANC has the advantage of im-
proving the robustness of control filter while reducing the
computational complexity. This paper presents a practical
strategy in choosing a suitable control filter based on the
frequency-band-match mechanism implemented in a parti-
tioned frequency domain filter structure. Both simulation and
real-time experiment are carried out validate the noise reduc-
tion performance of the SANC compared to the conventional
FxLMS algorithm.

Index Terms— Active Noise Control, Real-Time Imple-
mentation, Digital Signal Processing, FxLMS algorithm.

1. INTRODUCTION

Active noise control (ANC) system employs a secondary
source to generate anti-noise to cancel out the unwanted
noise that enters into the listening environment [1]. The un-
derlying signal processing mechanism behind ANC is the
filtered-x least mean square (FxLMS) algorithm and its vari-
ants. FxLMS is an adaptive algorithm that updates a control
filter’s coefficients in real time with the aim of generating
an anti-noise signal, which matches the primary noise in
space and time at the desired location. Although ANC is
ubiquitous in headphones [2, 3] and modern automobiles,
its application in larger three-dimensional spaces has been
limited. Active control of broadband noise in large spaces
requires multiple control sources that operate at higher sam-
pling frequencies with longer control filter. This improves
the coherence of reference and error sensors and satisfies
causality, which are important factors for good noise control
performance [4, 5]. To realize large multichannel ANC sys-
tems, high-performance processors, such as multi-core DSP
processors, FPGA [6], and GPU [7] are required, which in-
creases cost and complicates the programming effort. These
processing limitations undermine its potential applications
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(e.g., in building windows [8, 9, 10], large dimension ducts
or closure rooms, active noise barriers) and deteriorate the
system stability.

There are many different approaches to reduce the com-
putational burden for large structure ANC systems [11, 12].
One such solution is the use of a fixed filter to control dif-
ferent types of noise sources and orientations [13]. The co-
efficients of the control filter are first pre-trained for different
ANC setups, and then these trained (fixed) coefficients of the
control filter can be deployed in the actual operation using
low-cost analog and digital processing units. A point in case
is from ANC headphones, which generally use analog filters
by pre-tuning its gain and phase response to handle differ-
ent types of noise environments [14, 15]. Furthermore, this
fixed-coefficient filter ANC usually cannot change the con-
trol filter’s coefficients for different primary noise sources on
the fly, which will result in poor noise reduction performance.

In this paper, we propose a practical, computationally
efficient strategy to adapt to the different primary noise types.
This method is known as the selective active noise control
(SANC) and uses the frequency-band-match approach to
match the incoming noise frequency patterns with the spec-
trum of the control filter. The pre-trained control filter that
matches to the primary noise signature will be selected as
the control filter for the ANC system. The rest of this paper
is organized as follows. We will first discuss the theoretical
background behind the frequency-band-match method to re-
alize the SANC algorithm in Section II. The proposed SANC
algorithm is then outlined in Section III. Section IV presents
the SANC noise control performance in digital simulation
and follows by real-time experiment compared to the conven-
tional online FxLMS algorithm, before concluding with key
results in Section V.

2. FREQUENCY-BAND-MATCH METHOD

SANC is based on the frequency-band-match method to se-
lect pre-trained control filter coefficients to cancel a specific
type of primary noise. A pre-trained filter whose training sig-
nal has the same frequency band as the primary noise will be
selected as the control filter. The block diagram of the single
channel feedforward ANC is shown in Fig. 1. In the training
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Fig. 1. Block diagram of single channel feedforward ANC.

phase, a broadband training signal X0(ω) is input as a refer-
ence signal

X0(ω) = T0(ω)rect(
ω − ω0

2B0
), (1)

where T0(ω) is a univalent and conjugate symmetry function
[16] for ω. ω0 and B0 are the central frequency and bandwidth
of the training signal, respectively. The rectangular function
can be written as

rect

(
ω − ω0

2B0

)
= u(ω−ω0 +B0)−u(ω−ω0 −B0), (2)

where u(ω) is a Heaviside step function. Hence, the power
spectral density of filtered signal r0(n) = s(n) ∗ x0(n) (∗
denotes the convolution operation) can be stated as

Sr0r0(ω) = Sx0x0 |S(jω)|2rect
(
ω − ω0

2B0

)
, (3)

where S(jω) is the transfer function of the secondary path,
and Sx0x0 equals to E{X∗

0 (ω)X0(ω)}. The cross-spectral
density of the filtered signal r0(n) and disturbance noise d(n)
is expressed as

Sr0d0(ω) = Sx0x0(ω)S
∗(jω)P (jω)rect

(
ω − ω0

2B0

)
, (4)

where P (jω) is the transfer function of the primary path. The
optimal control filter [4, 5] of the trained signal at ω ∈ [ω0 −
B0, ω0 +B0] is stated as

W 0
opt(jω) =

Sr0d0(ω)

Sr0r0(ω)
=

P (jω)

S(jω)
. (5)

The recursive algorithms, such as FxLMS algorithm, can be
used to compute the W 0

opt(jω) outside the frequency of in-
terest (i.e., (−∞, ω0 − B0) ∪ (ω0 + B0,∞)). If the initial
coefficients of W 0(jω) are assumed to be zeros, the optimal
control filter would be

W 0
opt(jω) = 0, (−∞, ω0 −B0) ∪ (ω0 +B0,∞). (6)

By combining (5) and (6), the optimal control filter is rewrit-
ten as

W 0
opt(jω) =

P (jω)

S(jω)
rect

(
ω − ω0

2B0

)
. (7)

Next, we assume that the primary noise is a broad-
band noise with the central frequency of ω1 and bandwidth
B1 (B1 ≤ B0),

X1(ω) = T1(ω)rect

(
ω − ω1

2B1

)
. (8)

where T1(ω) has the same property as T0(ω). Based on the
same procedure as X0(ω), the optimal control filter of the
primary noise X1(ω) can be derived as

W 1
opt(jω) =

P (jω)

S(jω)
rect

(
ω − ω1

2B1

)
. (9)

As depicted in Fig. 1, the reference signal is given by

U(ω) = X1(ω) +N(ω), (10)

where N(ω) ∼ N(0, N0

2 ) is a white Gaussian noise, which is
the sum of quantization noise, channel noise from the primary
source to reference sensor, and electronic components noise.
If we apply W 0

opt(ω) as the control filter in Fig. 1 to cancel
the primary noise, the error signal is written as

E(ω) = X1(ω)P (jω)

− (X1(ω) +N(ω))W 0
opt(jω)S(jω).

(11)

Hence, when ω0 = ω1, its power spectral density can be de-
rived as

Se1e1(ω) = Se1e1(ω)minrect

(
ω − ω0

2B1

)
+

N0

2

∣∣∣∣P (jω)

S(jω)

∣∣∣∣2[rect(ω − ω0

2B0

)
− rect

(
ω − ω0

2B1

)]
,

(12)

where

Se1e1(ω)min = Sd1d1(ω)

−
|Sr1d1(ω)|2

Sr1r1(ω)
+

N0

2

∣∣∣∣P (jω)

S(jω)

∣∣∣∣2, (13)

and Sd1d1(ω) = E{D∗(ω)D(ω)}. Se1e1(ω)min is the PSD
of the error signal when the control filter arrives at its optimal
solution W 1

opt(jω). If we assume that the primary path and
secondary path are just pure delays with unit gain, the mean
square error (MSE) is derived by integrating (12)

E{e(n)2} =
1

2π

∫ ∞

−∞
Se1e1(ω)dω

= Jmin +
N0

2π
(B0 −B1) ,

(14)

where

Jmin =
1

2π

∫ ∞

−∞
Se1e1(ω)mindω, (15)
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Fig. 2. Overall block diagram of SANC.

which is the minimal square error (MMSE) of the Wiener-
Hopf solution [17]. In (14), if the bandwidth B0 equals to
B1, the MSE of SANC is same as the MMSE of the FxLMS.
Therefore, if the control filter of SANC has the same fre-
quency band with primary noise, it will achieve the same
noise reduction performance as the FxLMS.

3. PROPOSED SELECTIVE ACTIVE CONTROL
ALGORITHM

To further reduce computational complexity, com-partitioning
frequency domain adaptive filter (FDAF) [18, 19, 20, 21] is
modified to form a delayless selective ANC as shown in
Fig. 2. SANC consists of three main processes: (1) comb-
partitioning FFT, (2) convolution, and (3) classification and
weight update.

In the comb-partitioning FFT, an M -point FFT is applied
to complete an N -point frequency domain transform [20, 21]
(M < N ). The reference signal x(n) is first input into an
(N−K) taps delay line (M = N/K). Hence, the partitioned
input vector is defined as

x(n) = [x(n), x(n−K), . . . , x (n− (M − 1)K)]
T
, (16)

and its Fourier transform is stated as

X(k) = [X0(k), X1(k), . . . , XM−1(k)]
T
, (17)

where T denotes the transposition. Then, we can derive the
output ym(n) of the m-th convolution unit (shown in Fig. 3)
as

ym(n) = real

{K−1∑
q=0

Wm,q(k)Xm(k − qM)

}
, (18)

Fig. 3. The m-th convolution block, CONVm in SANC.

Since the input signal is real signal, its frequency spectrum is
conjugate symmetry, and the output y(n) of the control filter
is given by

y(n) =

M/2−1∑
m=0

ym(n) (19)

The SANC algorithm adopts the frequency-band-match
for classification, and continuously updates the coefficients
of the control filter, at every L iterations, as shown in Fig. 4.
The classification estimate the power spectrum of the primary
noise X(k) by accumulating its FFT result L times

Sx =

[ L−1∑
t=0

∥∥X0(k − t)
∥∥2, L−1∑

t=0

∥∥X1(k − t)
∥∥2, . . . ,

L−1∑
t=0

∥∥XM
2 −1(k − t)

∥∥2]T. (20)

A threshold is derived by the average of the minimum scalar
smin and the maximum scalar smax of the vector Sx in (20).

Vthr =
smin + smax

2
, (21)

It is compared with the vector Sx, which results a M
2 bit bi-

nary Aindex

Aindex,i =

{
0, for Sx,i < Vthr, i = Z+ ≤ M/2

1, for Sx,i ≥ Vthr, i = Z+ ≤ M/2,
(22)

where Aindex,i is the i-th bit of Aindex, and Sx,i is the i-
th element of Sx. In the final stage, the coefficient library
selects a set of coefficients W according to the index Aindex.
The coefficients in the library is attained by pre-training the
control filter by different broadband noises [20].

4. SIMULATION AND EXPERIMENT

In this section, an ANC simulation is carried out to exam-
ine the performance of the SANC algorithm compared to the
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Fig. 4. The classification and weight update part in SANC.

Fig. 5. (a). Similarity ratio of the selected filter and primary
noise; (b). Noise reduction of SANC and FDAF ANC for the
different frequency-band noises.

conventional FxLMS algorithm. The primary path and sec-
ondary path are measured from an air duct, and the system
sampling frequency is 8 kHz. The primary noise has a central
frequency of 2 kHz, and its frequency bandwidth gradually
increased from 40 Hz to 1 kHz. N = 256 and K = 4 are
used in the SANC. To test the performance of the classifica-
tion and weight update unit, a similarity ratio is introduced
as

SR =
Bover

max (B0, B1)
, (23)

where Bover is the bandwidth overlap between the primary
noise and selected filter, whose frequency bandwidths are B0

and B1, respectively. max(·) is choosing the larger one of the
two numbers. The similarity rate of the control filters chosen
by this unit for different primary noises is illustrated in Fig. 5
(a). The noise reduction performance of SANC and frequency
domain adaptive (FDAF) ANC for the primary noise with dif-
ferent bandwidth is shown in Fig. 5. When the SR is equal

Fig. 6. Power spectrum of the primary noise and the error
signal of SANC and FxLMS algorithm.

to 1, the SANC almost has the same noise reduction perfor-
mance as the FDAF ANC, which confirms the conclusion of
section II.

To verify the performance of SANC, it is implemented
on the NI PXIe 8135 platform and compared to FxLMS in
a duct. The system sampling frequency is 16 kHz, the filter
length N of the SANC and FxLMS is 1024, K and L are
chosen as 16 and 256, and the length Ls of the secondary path
model is 512. FxLMS uses (2N+Ls) = 2560 multiplications
and additions at each iteration, while SANC just uses (N +
N
K log N

K + N
LLs

) = 1408 operations. The frequency range of
primary noise is from 400 to 600 Hz. The noise reduction of
the SANC and FxLMS are 21.9 dB and 23 dB, respectively,
as shown in Fig. 6.

5. CONCLUSION

This paper revisits and proves the frequency-band-match
method for the implementation of selective ANC (SANC), in
which the algorithm will choose a suitable pre-trained con-
trol filter based on the frequency band of the primary noise
rather than adaptively updating the coefficients of the control
filter. This paper also proposed a SANC technique based on
frequency domain adaptive filter (FDAF) algorithm, which
significantly reduces the computational burden of FFT. A
new classification and weight update module in the algorithm
efficiently realizes the adjustment of the control filter for
different primary noise in real-time. To verify this SANC
algorithm, we implemented it in NI PXIe-8135 and tested its
performance in an ANC duct. The result shows it can achieve
21.9 dB noise reduction for a broadband noise at the low
frequency.
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