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ABSTRACT

High-quality and high-resolution depth maps have opened
tremendous possibilities for various applications, such as
AR/VR display, 3D reconstruction, image refocusing, and
view synthesis. But high-resolution depth estimation requires
heavy hardware resources. Depth upsampling with weighted
mode filtering is an efficient way to overcome this challenge.
However, its hardware implementation has two major de-
sign issues: large on-chip memory for storing high-precision
depth labels and high logic cost for computing adaptive range
weight. In this work, we present two techniques, histogram
candidate mapping and binary range weight kernel, which
can reduce on-chip memory size and logic gate count by
46.9% and 64.3% respectively. Furthermore, we also imple-
ment a VLSI circuit for 4K Ultra-HD depth video upsampling
using TSMC 40nm technology. It has 25.5-KB SRAM and
420K-gate logic, and the core area is 1.1 × 1.1 mm2. When
operating at 200 MHz and 0.9V, it delivers 320M pixel/s to
support 4K Ultra-HD depth video at 40 fps, and consumes
104 mW based on post-layout simulation.

Index Terms— Weighted mode filter, depth upsampling,
VLSI architecture, 4K-Ultra HD

1. INTRODUCTION

As the trend of computer vision arises, accurate depth maps
are widely used in many computer vision fields, such as
robotics, including navigation, manipulation, object recog-
nition, and human pose analysis, and other applications like
3D modeling, virtual/augmented reality display, view synthe-
sis, and image refocusing. Depth estimation solutions can
be divided into two classes, active and passive techniques.
However, both of these methodologies suffer from the limited
spatial resolution and measuring noise.

To address the resolution problem, upsampling techniques
have been proposed, and they are mainly categorized into
two classes. The first class is motivated by the idea of the
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image super-resolution, which explicitly considers the low-
resolution image formation process. Multiple depth maps up-
sampling [1, 2, 3] requires multiple sensors or time sequences.
Nevertheless, the alignment between depth maps is necessary
but extremely challenging and requires precise camera motion
estimation.

The second class solves the upsampling task by filtering.
It deals well with noisy low-resolution depth map since it of-
ten considers a registered high-resolution texture image as-
suming the correlation between depth and texture structures.
Cost-volume-based methods [4, 5] perform the 2D filtering
of each depth candidate on the 3D cost volume. Though they
perform well for large upsampling scale, the computational
cost is heavy. On the other hand, joint bilateral filter [6]
and guided filter [7] have been adopted directly on the depth
map. They sometimes give inaccurate edges on depth map
which result in considerable depth bleeding artifacts due to
the inconsistency between color and depth variations. To han-
dle such artifacts, weighted median [8] and weighted mode
filters [9] were proposed. Instead of averaging on the fil-
tered output values, they seek the median and mode values
from a local weighted histogram respectively, and they can
successfully preserve object boundaries. Considering both
quality and computational efficiency, the weighted mode fil-
ter (WMoF) is employed in this work. Chen et al. [10]
proposed a VLSI architecture of WMoF, but it suffered from
large memory size and logic gate count.

In this work, we propose a VLSI design and implementa-
tion for the WMoF under TSMC 40nm technology. It deliv-
ers the throughput to 320M pixel/s, 4K Ultra-HD depth video
at 40 fps, operating at 0.9V and 200 MHz. We first intro-
duce WMoF and analyze the design challenges in Section 2.
In section 3, we introduce the two major proposed architec-
tures: binary range weight and histogram candidate mapping,
and describe how they address the design challenges. Then
the corresponding implementation details and results are dis-
cussed in Section 4. Finally, we conclude our work in Section
5.
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2. WEIGHTED MODE FILTER AND CHALLENGES
FOR IMPLEMENTATION

The weighted mode filter focus on developing a post-processing
algorithm with the local histogram H(t, d), which means that
each bin represents an occurrence of neighboring pixels in-
side a source window.

Hw(t, d) =
∑

s∈N(t)

w(s, t)δ(D(s)− d) (1)

w(s, t) = GS(s− t, σS)GR(Is − It, σR) (2)

In the local histogram of weighted mode filter, the histogram
is biased, which means depth occurrence inside the region
is adaptively counted on its corresponding bin by using the
weight function w(s, t) which is evaluated with the difference
of the target pixel and source pixels. The weight function
w(s, t) considers not only the spatial weight GS(·) but also
the intensity weight GR(·) between the target pixel t and the
source pixel s within the source window N(t). GS(·, σS) and
GR(·, σR) represents the Gaussian functions with the corre-
sponding standard deviations to measure the data difference
for spatial and range weight respectively, where s = (xs, ys)
and t = (xt, yt) are the position of each pixel and Is and
It stand for the intensity of pixel s and t. After construct-
ing the local weighted histogram, the bin with the maximum
weighted sum in the histogram is the final mode result. Fi-
nally, a simple quadratic curve fitting is applied around the
mode bin to further improve the precision of the result.

In this work, we aim to propose a real-time upsampling
engine to increase the resolution of depth map to 4K Ultra-HD
at 30 fps. To achieve such high throughput, a large number of
target pixels should be processed simultaneously. Each tar-
get pixel possesses its own histogram which is not shareable.
That is, the tremendous memory cost for histogram is one of
the design challenges. Besides, the other important design
issue is the large gate counts due to the complex histogram
updating process. To address these problems, we propose the
binary range weight kernel to reduce both the memory cost
and the gate counts. Then, the histogram candidate mapping
architecture is introduced to further reduce the memory cost.

3. DESIGN OF PROPOSED ARCHITECTURE

We propose a VLSI circuit of weighted mode filter to sup-
port 4K Ultra-HD depth video upsampling at 30 fps. The
whole system architecture is shown in figure 1. The sys-
tem consists of memory managing unit and WMoF engine
group. The memory managing unit is responsible for I/O im-
age data arrangement, and external memory arbitration. To
meet throughput requirement, 16 pieces of the WMoF engines
are employed in the WMoF engine group.
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Fig. 1. System architecture.

3.1. Binary Range Weight Kernel

The Histogram Update Unit evaluates weight for each occur-
rence inside the local histogram. The weight kernel considers
not only the spatial difference but also the intensity dissimilar-
ity. Moreover, since each pixel should be calculated indepen-
dently, the histograms of every target pixel cannot be shared.
The gate count is seriously affected by the two factors, even
if the kernel evaluation is implemented in look-up table, the
histogram update unit accounts for about 34% of total area as
reported in [10].

A trivial implementation to calculate the weight is com-
bining two Gaussian look-up tables, for range weight and spa-
tial weight respectively. To reduce the gate count, we intro-
duce binary range weight kernel. The detailed architecture of
Histogram Update Unit is illustrated in figure 2. The candi-
date is only counted when the intensity difference is below
the threshold. Otherwise the candidate is considered as in-
valid. On the other hand, the spatial weight is still imple-
mented with a Gaussian look-up table. Though the binary
range weight kernel could slightly affect the quality as shown
in figure 3, the quality loss is acceptable.
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Fig. 3. Evaluation between binary kernel and Gaussian ker-
nel. The experiment was conducted on the test images gen-
erated by semi-global-matching (SGM)[11] from Middlebury
Stereo Vision[12]. The average error rate contains 12 differ-
ent data sets.

Compared to Gaussian weight kernel as shown in figure 3,
the error rate of binary one increases only 0.5%, but the gate
counts decrease 64.3%. Besides gate counts, binary weight
kernel technique can also save the memory cost. Since the
range weight is calculated by binary weight kernel and the
spatial weight is still calculated by Gaussian weight kernel,
when updating the weighted histogram, only spatial weight
requires be accumulated. For our design with binary range
weight kernel, 6-bit spatial weight and 12-bit weighted sum
are adopted. If Gaussain range weight kernel is adopted, ex-
tra 6-bit for weighted sum is required. Therefore, the binary
range weight kernel can save the memory cost for histogram
by 33.3%.

It is worth noting that if configurable variance for weight
kernel is required, the hardware will suffer overhead from
look-up table implementation. The Gaussian kernel will re-
quire more look-up tables to support various variance. But for
binary kernel, the 8-bit threshold comparator can support full
coverage for all possible intensity differences. In our design,
we provide 5 different variances for Gaussian spatial weight.

3.2. Histogram Candidate Mapping

Every target pixel needs a histogram SRAM, so the histogram
SRAM accounts for up to 90% of the on-chip memory. In
[10], the histogram is directly mapped to SRAM, that is, the
histogram SRAM is designed to have the entries with the
same amount of histogram bins to cover all possible depth
candidates as shown in figure 4(a). The SRAM requirement
for the direct mapping can be formulated as

(d · wws) · nt bits, (3)

where d is the amount of depth candidates, nt is the number
of total target pixels, and wws is the bit-width of the weighted
sum. For wide depth range application, the direct mapping ar-
chitecture requires large amount of SRAM since the memory
size linearly increases with depth range. In our target sce-
nario (depth range of 128), the SRAM requirement for the
direct mapping will take 48 KBytes.
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Fig. 4. Histogram updating method.

Since the number of depth labels is more than that of win-
dow size for our design, even all candidates within the support
window possess different depth values, there will still be re-
dundant bins. Therefore, we utilize the histogram memory
redundancy, and we propose the histogram candidate map-
ping method to reduce the histogram memory usage. In fig-
ure 4(b), we demonstrate the histogram candidate mapping
method. An additional candidate mapping dictionary is in-
troduced to register the mapping between the source pixel,
which ranges from 0 to d, and the address, which ranges from
0 to r2 and r represents the radius of the support window, for
histogram. The total memory requirement can be formulated
as

(d · log2r2) · ng + (r2 · wws) · nt bits, (4)

where ng = nt

upsampling factor2
is the total target groups that

need updating, the first term represents the candidate mapping
dictionary, and the second term stands for the histogram. Note
that the target pixel group shares the same source candidate,
but the pixels in each target pixel group cannot share their
histogram.

With the same window size and throughput, as the amount
of depth candidates increases, the memory saving percent-
age is more significant. The high-resolution depth map of-
ten requires a wider range for depth labels. Therefore, the
histogram candidate mapping architecture can be efficiently
adopted in the application scenarios with small window size
and wide depth range.

Overall, with upsampling factor 4, both binary range
weight kernel and histogram candidate mapping architectures
can reduce the memory cost as shown in figure 5. Binary
range weight kernel reduce the cost by 33.3%, and histogram
candidate mapping technique reduce the cost by 47%. With
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Technology TSMC 40 nm

Supply Voltage Core 0.9V, I/O 2.5V

Chip Size 1.67 × 1.67 mm2

Core Size 1.09 × 1.09 mm2

Gate Count 420k (2-input NAND)

On-Chip Memory 25.5 KByte

Maximum Throughput 320M pixel/sec @ 200MHz

Power Consumption 104 mW

Maximum Output Depth Map Size 3840 × 2160 @ 40fps

Upsampling Factor 4

Number of Depth Bin 128

Window Size 8 × 8

Table 1. Implementation result on the proposed architecture.

Histogram-based Window-based

[13] [14] [15] [10] Ours

Filter Type
Joint Bilateral 

Filter
Guided Filter

Weighted 

Median Filter

Weighted 

Mode Filter

Weighted 

Mode Filter

Implementation 

Method
UMC 90nm TSMC 90nm

Intel i7 

3.4GHz CPU
TSMC 40nm TSMC 40nm

Gate Count 

(2-input NAND)
356k 92.9k - 247k 420k

Throughput 

(pixels/sec)

124M @ 

200MHz

62.2M @ 

100MHz
4.6M

67.5M @ 

200MHz

320M @ 

200MHz

On-chip

Memory (KBytes)
23 3.2 - 5.4 (2-port) 25.5

Window Size 31 × 31 31 × 31 10 × 10 8 × 8 8 × 8

Number of Bins 64 - 256 128 128

Table 2. Implementation performance comparison.

both methods, we can reduce the memory cost by 65% in
total as compared to the conventional implementation.
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Fig. 5. On-chip memory reduction by the proposed method.

4. IMPLEMENTATION

The proposed architecture of the weighted mode filter has
been implemented with Verilog-HDL and synthesized under
the TSMC 40nm technology process, and the result are sum-
marized in the table 1. The final layout is shown in the figure
6. The bit-width of the input depth label is 7, and the design
further increases its precision to 9 bits with the curve fitting
unit. The total power consumption is 104 mW at 0.9 V and
200 MHz, and it is worth noting that the on-chip memory ac-
counts for up to 74%.

Table 2 compares specification between our implementa-
tion and other different filters. Tseng et al. [13] proposed
the joint bilateral filter with large supported window and high
throughput, but the number of the depth candidate is low.
Kao et al. [14] proposed VLSI architecture design of guided
filter which can deliver high throughput with low hardware
cost. However, joint bilateral filter and guided filter are not
suitable for depth map upsampling. Compared to Chen et
al.[10], although they have smaller SRAM size, our design
provides 4.7x higher throughput and uses single-port SRAM
rather than two-port SRAM for overall SRAM area and power
consumption concern.
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Fig. 6. Chip layout.

Input Output

Fig. 7. Result of the proposed architecture with input data
sets from Middlebury Stereo Vision[12].

5. CONCLUSION

In this work, after analyzing the depth quality and hard-
ware complexity, we propose an VLSI architecture design of
weighted mode filter for 4K Ultra-HD depth map upsampling.
Our two major contribution: binary range weight kernel and
histogram candidate mapping address the gate count and
memory cost issues. The binary range weight kernel reduce
the gate counts by 64% and the histogram memory cost by
33%. Then, the histogram candidate mapping architecture
can further reduce the histogram memory by 47%. With the
proposed architecture, the system delivers 320M pixel/s at
0.9V and 200MHz with a gate count of 420k and 25.5 KB
on-chip memory.
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