
RESOURCE EFFICIENT HARDWARE IMPLEMENTATION FOR REAL-TIME TRAFFIC
SIGN RECOGNITION

Huai-Mao Weng, and Ching-Te Chiu

Department of Electrical Engineering, National Tsing-Hua University, Hsinchu, Taiwan
woodghost11235@gmail.com, ctchiu@cs.nthu.edu.tw

ABSTRACT

Traffic sign recognition (TSR) is one of the Advanced Driver
Assistance System (ADAS) device in modern cars. We pro-
pose a high efficiency hardware implementation for TSR,
which is divided into two stages. In the detection stage,
we use Normalized RGB color transform and Single-Pass
Connected Component Labeling (CCL) to find the potential
traffic signs. In the recognition stage, the Histogram of Ori-
ented Gradient (HOG) is used to generate the descriptor of
the signs, and we classify the signs with the Support Vector
Machine (SVM). The proposed method achieves 96.61% de-
tection rate and 90.85% recognition rate while testing with
the GTSDB dataset. Our hardware implementation reduces
the storage of CCL and simplifies the HOG computation. By
using TSMC 90nm technology, the proposed design operates
at 105 MHz clock rate and processes in 135 fps with the
image size of 1360×800. The chip size is about 1mm2 and
the power consumption is close to 8mW. Therefore, this work
is resource efficient and achieves real-time requirement.

Index Terms— Traffic Sign Recognition, Advanced
Driver Assistance System, Real-Time Processing, Connected
Component Analysis, VLSI

1. INTRODUCTION

Advanced Driver Assistance System (ADAS) is a common
device in modern cars. ADAS is designed to enhance car
safety and driving comfort. The Traffic Sign Recognition
(TSR, or Road Sign Recognition, RSR) can help driver no-
tice the fast passed signs, thus avoiding traffic violations nor
accidents. The TSR must be fast enough to react to the chang-
ing traffic conditions. The recognition rate should be high
enough to detect most signs and prevent false information.
The method should be fast as well as easy to implement with
hardware, which is able to process in real-time. Besides, a
well-designed hardware implementation should be low cost
as well as energy saving, that means resource efficiency.

There are many researches for TSR proposed. Mammeri
et al. [1] classify the most TSR methods into three categories.
The image-processing based (traditional computer-vision)
methods use various computer-vision technique to find traffic

signs. It is fast, but the recognition rate is relatively low.
The machine learning based method achieves high recogni-
tion rate, but the complexity makes it difficult to process in
real-time. The hybrid method takes both advantages of fast
computation and high recognition rate. It detects the poten-
tial signs in the source image by the image-processing based
method, and recognizes the signs by the machine learning
based method.

The hybrid method divides the TSR procedure into two
stages, detection and recognition. In the detection stage, a
specialized color transform with thresholding, followed by
the Connected Component Labeling (CCL) procedure, is an
effective way to extract traffic signs [2, 3, 4]. Some researches
[5, 6, 7] use the maximally stable extremal region (MSER) to
extract the stable regions. Liu et al. [8] propose the HCRE
to extract the regions by a possibility map. In the recogni-
tion stage, the descriptor and classifier method is often used.
The common descriptor choices are the Histogram of Ori-
ented Gradient (HOG) [9, 5, 3, 4, 7] or modified HOG [10, 6].
The classifier can be support vector machine (SVM) [11, 5, 3,
4, 6], neural networks [7] or SRC-based classifier [8]. Most of
the recently propose researches implement the hybrid method,
so does this work.

The proposed TSR method is illustrated in Section 2. Sec-
tion 3 shows the performance evaluations. Section 4 intro-
duces the hardware architecture of the proposed method and
the implementation results. A brief conclusion is given in
Section 5.

2. PROPOSED TSR METHOD

2.1. Detection Procedure

The detection procedure is used to detect the potential traffic
signs form the source image. It is the most time consump-
tion part of the whole TSR procedure. Because we have to
scan the whole source image to find the potential traffic signs
(or Region-of-Interest, ROI) before recognizing every found
ROIs. Figure 1 shows the results of each step in the detection
procedure.

First, we reduce the searching space by removing the top
25% and the bottom 15% of the source images. In addition,

1120978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

Fig. 1. Results of each step in the detection procedure

we split a source image into left-frame and right-frame, then
process two frames independently. Our experiment shows
that there are less than 4% of total signs are out of the search-
ing space. Overall, the searching space is reduced by 40%
and two independent frames generated.

Second, we use the color segmentation to extract the
specified color of the traffic sign boundary, e.g. red and blue.
The first part of color segmentation is the transform. The
researches [11, 5, 6] claim that the Normalized-RGB Color
Transform performs the most robust result under different
lighting and contrast condition. A gray-scale image is gen-
erated by the color transform, and the value is higher for red
or blue, lower for other colors. We want to emphasize the
negative influence of green color. The modified normalized
RGB color transform, called NRB color transform, is shown
as following:

NRB(R,G,B) =
max(R,B)

R+G× β +B + α
, (1)

where R,G,B are the red, green and blue color channel, re-
spectively. max(R,B) is the maximum value betweenR and
B. α is a small constant that set to 8. β is a green color
magnification, we set to 4 in this work.

The second part of color segmentation is the thresholding.
A threshold is used to determine if the pixel has the specified
color or not. Thus, the binary image is produced. For the flex-
ibility under different conditions, we use multiple thresholds
instead of a single threshold. Hence, multiple binary images
are produced by thresholding.

Third, we use the Connected Component Labeling (CCL)
algorithm to group the white pixels in the binary image. The
algorithm scans the binary image and assigns the label to each

pixel using only local operations. A set of connected pixels
is called a “region”. Two pixels are “connected” if they are
adjacent to each other. The single-pass CCL algorithm [12]
eliminates the second pass of traditional two-pass algorithm
by record the “features” of region during the first pass. There-
fore, the theoretical computing time is reduced by half.

When scanning pixels in the image, the decision of the
current label number is observed by only the neighbor labels
in the previous row. The “row-buffer” records the labels of
previous row instead of the whole labeled image. Because
the single-pass CCL outputs the feature of regions, the “data-
table” is introduced to store the extracted features. Overall,
the memory of the CCL is greatly reduced by the elimina-
tion of the labeled image. We select the bounding box as the
region feature in this work. The bounding box contains the
boundaries of regions, which lets us extract the ROIs from
the source image. Finally, we pass the detected ROIs to the
next main procedure, recognition.

2.2. Recognition Procedure

The recognition procedure classifies the potential traffic signs
found by the detection procedure. The schematic diagram of
the recognition procedure is shown in Figure 2. We first check
the region criteria by observing only the bounding box infor-
mation. The width and height of the region should not be
greater than 140pixel nor less than 20pixel. The width/height
ratio should be within 0.75 and 1.25. According to the exper-
iment, there are averagely 10.75 ROIs per image that meet the
criteria. We extract the eligible regions from the source im-
age. They are converted into gray-scale and resized to 32×32,
before the HOG calculation.

Fig. 2. Schematic diagram of the recognition procedure

Next, we calculate the HOG descriptor of the legal re-
gions. We choose the HOG parameters that reference to Dalal

1121

et al. [13]: 3x3 blocks per window, 2x2 cells per block, 8x8
pixles per cell, a 8-bin histogram spreads over 0 to 360 de-
grees, and the arithmetic mean is used for normalization. We
use fixed-point calculation for simplification and faster com-
putation. In other words, the quantization is performed for
easier hardware implementation. The gradient calculation of
X-axis and Y-axis are [−1, 0, 1] and [−1, 0, 1]T . The magni-
tude is approximate by the Manhattan distance:

|grad| = |gradx|+ |grady| , (2)

where |gradx| and |grady| are the absolute values of X-
gradient and Y-gradient. When we need only 8 bins result
that distributes over 0 to 360 degrees, the orientation calcula-
tion can be approximated as the following formula:

orix,y = (grady < 0) · 4 + (gradx < 0) · 2
+ (|gradx| > |grady|) · 1, (3)

where the comparing calculation (e.g. < and >) produces 1-
bit result. The value of orientation result is an integer between
0 to 7, which represents a bin of the one-eighth in 360 degrees.

After the HOG descriptor of a region is generated, we
classify the ROIs with the Support Vector Machine (SVM)
[14]. The parameters for SVM are: one vs. one type, linear
kernel, γ = 0.1, and C = 10. We use the 80-20 ratio for
cross-validation. Finally, the traffic signs in the source image
are recognized and the false positives are removed.

3. PERFORMANCE EVALUATION

3.1. Testing Dataset and Environment Settings

We use the German Traffic Sign Detection Benchmark
(GTSDB) [15] to test our TSR method. The target sign size
is between 24×24 and 128×128. Our experiment contains
about 500 images with more than 700 traffic signs. Figure 3
shows the 35 target sign classes and the 3 major classes.

Fig. 3. Traffic sign classes and the major classes of GTSDB.
(a) Prohibitory (b) Danger (c) Mandatory

If a detected region has more than 75% overlap area with
the ground-truth, we decide that it is a detection hit. If there

is a correct detected sign, it should be classified into the cor-
responding class. Else, the false detected regions should be
classified as non-traffic-sign. The software implementation is
written in C++ using the OpenCV 3.0 library. The SVM uses
the LIBSVM [16] library. Our experiment executes on the PC
with Intel Xeon E3-1230v2 (3.2GHz) CPU and 16GB RAM.

3.2. The Influence of Color Segmentation Thresholds

We use multiple thresholds to overcome the variation of
weather and lighting conditions. Table 1 shows the detection
rate under multiple thresholds. However, the improvement
is negligible when using more than three thresholds. The
disadvantage of multiple thresholds is that the CCL needs
more time to process multiple images. Overall, we select
three thresholds to reach the 96.61% detection rate.

Table 1. Color Segmentation Thresholds vs. Detection Rate
thresholds 56 52,56 52,60 52,64 56,60 56,64 52,56,60 52,56,64

detection rate 0.7791 0.9201 0.9327 0.9130 0.9046 0.9032 0.9661 0.9593

3.3. The Influence of Reducing HOG Calculation Bits

For easier hardware implementation and resource efficiency,
we use fix-point calculation for the HOG descriptor. Thus,
the bit width of HOG input and output should be decided.
According to Table 2, the reducing of input bits does not have
significant influence on recognition rate until 4-bit. Table 3
shows the influence of reducing HOG output bits. We find
that the recognition rate is almost unchanged while reducing
the descriptor bits, until the 4-bit fixed point is tested. In ad-
dition, if we truncate the descriptor values, there is one more
output bit reduced. Even though, the recognition rate keeps
unchanged, because there are too little overall affected val-
ues. In brief, the proposed TSR method reaches the 90.85%
recognition rate when the data width is 4-bit for input and
3-bit for output.

Table 2. The influence of reducing HOG input bits vs. recog-
nition rate

recognition
rate (%)

input bits
6 5 4 3 2

output
bits

10 91.40 90.29 90.43 87.79 77.66
7 90.84 90.29 91.12 87.65 76.97
4 90.70 90.15 90.29 86.13 75.86

Table 3. The influence of reducing HOG input bits vs. recog-
nition rate

recognition
rate (%)

output bits
6 5 4 3 2

input
bits

8 90.70 91.12 91.40 88.76 80.85
6 91.53 91.40 90.70 89.04 79.05
4 90.70 90.29 90.29 87.79 79.88

1122

4. HARDWARE IMPLEMENTATION

4.1. Overall Architecture

The hardware design should implement the most critical part
of the TSR method. Therefore, we implement the detection
procedure and the HOG calculation of recognition procedure
in hardware. The source image first inputs to the hardware
color segmentation unit, pixel by pixel as raster scanning. The
pixels that determined as foreground or background are deliv-
ered to the single-pass CCL unit to group the connected pixels
into a ROI. Next, the detected ROIs are checked with several
conditions by the software procedure, and the ROIs that pass
the conditions are resized to a constant size. The HOG unit
generates the descriptors of resized ROIs. Finally, these de-
scriptors are classified by software SVM, and the traffic sign
recognition is done.

The top module for TSR contains two independent main
modules, detection module and recognition module. The in-
put data of detection module is the source image. The output
is the region information of potential signs (or ROIs). In fact,
the information is the feature vector of ROIs. The detection
module contains two sub-modules, color segmentation (CS)
and connected component labeling (CCL). After NRB trans-
forming and thresholding in CS module, the color pixel re-
duces into 1-bit value and passes to CCL module. The input
of recognition module is the resized region and the output is
HOG descriptor. There is a HOG sub-module contained in
the recognition module. Figure 4 shows the block diagram of
TSR top module.

Fig. 4. Block diagram of TSR top module.

The detection module receives one pixel per cycle. We
set the frame size to 680×480, and there are two frames in an
image. Additional 128 cycles after scanning a row is needed.
Thus, the detection procedure takes 387840 cycles to process
a frame, which means 775680 cycles to process an image. For
the HOG module, we need 64+64 cycles to fill and process the
cell-buffer. The block-buffer contains 4 cells. There are an-

other 32 cycles to output the descriptor in a block and total 9
blocks to be computed. Overall, the detection procedure takes
4896 cycles to process a ROI. There are 10.75 ROIs per im-
age on average, which means it takes 52632 cycles to process
all ROIs in an image. The detection module and the recog-
nition module are independent. When the detection module
produces a valid ROI, the ROI will be send to the recognition
module. Therefore, the detection module is the bottleneck.
Briefly, the proposed TSR design requires 775680 cycles to
process an image.

4.2. Implementation Results and Comparisons

We synthesize and perform APR to the proposed TSR hard-
ware architecture with TSMC 90nm CMOS technology. The
core size is 0.26mm2 and chip size is about 1mm2. The de-
sign operates at 105 MHz clock frequency. It needs 775680
cycles to process an input image, which means the speed is
up to 135fps, or 7.4ms per image.

We compare our TSR hardware design with other TSR
hardware designs. The designs could be Field Programmable
Gate Array (FPGA) [17, 18, 19, 20] or Application-Specific
Integrated Circuit (ASIC) [20]. According to the comparison
in Table 4, our design has the fastest processing speed with
large input image size.

Table 4. Comparison of the TSR Hardware Designs
Design Image

Size
Technology Area /

Gate Count
Freq.
(MHz)

Speed
(ms/frame)

[17] 640x480
Xilinx
Virtex 4

160K NAND 88 16

[18] 320x240
Xilinx
Virtex 5

N/A 100 114

[19] 1280x720
Xilinx
Spartan 6

N/A 75 16.6

[20] 320x240 130nm 10.61mm2 200 33.3
This
work

1360x800 90nm 0.26mm2 105 7.4

5. CONCLUSIONS

In this paper, we propose a traffic sign recognition method and
its resource efficient hardware implementation that processes
in real-time. The proposed TSR method achieves 96.61% de-
tection rate and 90.85% recognition rate while testing with
GTSDB dataset. Our hardware implementation reduces the
storage of CCL, and simplifies the HOG computation. The
proposed hardware operates at 105 MHz clock frequency by
using TSMC 90nm CMOS technology. With image size of
1360×800, the processing speed is up to 135 fps. The chip
size is about 1mm2 and the power consumption is close to
8mW. Therefore, this work is resource efficient and achieves
real-time requirement.

1123

6. REFERENCES

[1] A. Mammeri, A. Boukerche, and M. Almulla, “Design
of traffic sign detection, recognition, and transmission
systems for smart vehicles,” IEEE Wireless Communi-
cations, vol. 20, no. 6, pp. 36–43, December 2013.

[2] A. Ruta, Y. Li, and X. Liu, “Real-time traffic sign recog-
nition from video by class-specific discriminative fea-
tures,” Pattern Recognition, vol. 43, no. 1, pp. 416 –
430, 2010.

[3] Z. Chen, X. Huang, Z. Ni, and H. He, “A gpu-based real-
time traffic sign detection and recognition system,” in
2014 IEEE Symposium on Computational Intelligence
in Vehicles and Transportation Systems (CIVTS), Dec
2014, pp. 1–5.

[4] F. Zaklouta and B. Stanciulescu, “Real-time traffic sign
recognition in three stages,” Robotics and Autonomous
Systems, vol. 62, no. 1, pp. 16 – 24, 2014, new Bound-
aries of Robotics.

[5] J. Greenhalgh and M. Mirmehdi, “Real-time detection
and recognition of road traffic signs,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 13,
no. 4, pp. 1498–1506, Dec 2012.

[6] X. Yuan, X. Hao, H. Chen, and X. Wei, “Robust traf-
fic sign recognition based on color global and local ori-
ented edge magnitude patterns,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 4, pp.
1466–1477, Aug 2014.

[7] Y. Yang, H. Luo, H. Xu, and F. Wu, “Towards real-time
traffic sign detection and classification,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 17,
no. 7, pp. 2022–2031, July 2016.

[8] C. Liu, F. Chang, Z. Chen, and D. Liu, “Fast traffic sign
recognition via high-contrast region extraction and ex-
tended sparse representation,” IEEE Transactions on In-
telligent Transportation Systems, vol. 17, no. 1, pp. 79–
92, Jan 2016.

[9] M. Liang, M. Yuan, X. Hu, J. Li, and H. Liu, “Traffic
sign detection by roi extraction and histogram features-
based recognition,” in The 2013 International Joint
Conference on Neural Networks (IJCNN), Aug 2013,
pp. 1–8.

[10] G. Overett, L. Tychsen-Smith, L. Petersson, N. Pet-
tersson, and L. Andersson, “Creating robust high-
throughput traffic sign detectors using centre-surround
hog statistics,” Machine Vision and Applications,
vol. 25, no. 3, pp. 713–726, Apr 2014.

[11] . Gonzalez, M. . Garrido, D. F. Llorca, M. Gavilan, J. P.
Fernandez, P. F. Alcantarilla, I. Parra, F. Herranz, L. M.
Bergasa, M. . Sotelo, and P. R. de Toro, “Automatic traf-
fic signs and panels inspection system using computer
vision,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 12, no. 2, pp. 485–499, June 2011.

[12] A. AbuBaker, R. Qahwaji, S. Ipson, and M. Saleh, “One
scan connected component labeling technique,” in 2007
IEEE International Conference on Signal Processing
and Communications, Nov 2007, pp. 1283–1286.

[13] N. Dalal and B. Triggs, “Histograms of oriented gra-
dients for human detection,” in 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 1, June 2005, pp. 886–893
vol. 1.

[14] C. Cortes and V. Vapnik, “Support-vector networks,”
Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995.

[15] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and
C. Igel, “Detection of traffic signs in real-world im-
ages: The german traffic sign detection benchmark,”
The 2013 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8, 2013.

[16] C.-C. Chang and C.-J. Lin, “Libsvm: A library for sup-
port vector machines,” ACM Trans. Intell. Syst. Technol.,
vol. 2, no. 3, pp. 27:1–27:27, May 2011.

[17] C. Souani, H. Faiedh, and K. Besbes, “Efficient algo-
rithm for automatic road sign recognition and its hard-
ware implementation,” Journal of Real-Time Image Pro-
cessing, vol. 9, no. 1, pp. 79–93, Mar 2014.

[18] S. Waite, “Fpga-based traffic sign recognition for ad-
vanced driver assistance systems,” vol. 03, pp. 1–16, 01
2013.

[19] N. Aguirre-Dobernack, H. Guzmn-Miranda, and M. A.
Aguirre, “Implementation of a machine vision system
for real-time traffic sign recognition on fpga,” in IECON
2013 - 39th Annual Conference of the IEEE Industrial
Electronics Society, Nov 2013, pp. 2285–2290.

[20] J. Park, J. Kwon, J. Oh, S. Lee, J. Y. Kim, and H. J.
Yoo, “A 92-mw real-time traffic sign recognition system
with robust illumination adaptation and support vector
machine,” IEEE Journal of Solid-State Circuits, vol. 47,
no. 11, pp. 2711–2723, Nov 2012.

1124

