
A 203 FPS VLSI ARCHITECTURE OF IMPROVED DENSE TRAJECTORIES FOR
REAL-TIME HUMAN ACTION RECOGNITION

Zhi-Yi Lin?† Jia-Lin Chen? Liang-Gee Chen†

?† zylin@video.ee.ntu.edu.tw ?jocelyn@video.ee.ntu.edu.tw † lgchen@ntu.edu.tw
DSP/IC Design Lab, Graduate Institute of Electronics Engineering

National Taiwan University

ABSTRACT

This paper introduces architecture with high throughput,
low on-chip memory, and efficient data access for Improved
Dense Trajectories (iDT) as video representations for real-
time action recognition. The iDT feature can capture long-
term motion cues better than any existing deep feature, which
makes it crucial in state-of-the-art action recognition sys-
tems. There are three major features in our architecture
design, including a low bandwidth frame-wise feature extrac-
tion, low on-chip memory architecture for point tracking, and
two-stage trajectory pruning architecture for low bandwidth.
Using TSMC 40nm technology, our chip area is 3.1 mm2, and
the size of on-chip memory is 40.8 kB. The chip can support
videos in resolution of 320×240 with a throughput of 203
fps under 215 MHz, which is a 81.2 times speedup compared
with CPU. Under the same operating frequency, it can also
provide feature extraction for six windows of size 320×240
in higher resolution videos with a throughput of 34 fps.

Index Terms— real-time action recognition, Improved
Dense Trajectories, ASIC, chip design, feature extraction ar-
chitecture

1. INTRODUCTION

Action recognition receives a lot of attentions from re-
searchers in computer vision field because of its wide spec-
trum of applications. It is important to response in real time
for applications related to interaction or security issues, such
as surveillance system, robots, and self-driving cars. How-
ever, few methods can really achieve real-time performance
with CPUs, let alone action prediction, which is the ultimate
goal of action recognition to predict actions that are about to
happen like humans do. Therefore, hardware acceleration is
a must in real applications of action recognition.

There are plenty of features proposed to represent actions
in video sequences. Trajectory-based features [1, 2, 3, 4] are
the trend of hand-crafted features since they can capture in-
formation in longer time segments, which is proved to be cru-
cial for action recognition. The Improved Dense Trajectories
(iDT) [2], belonging to trajectory-based features, is the most

Fig. 1. Proposed architecture of Improved Dense Trajectories.

efficient action features used in state-of-the-art action recog-
nition systems [3, 4, 5, 6, 7, 8, 9, 10, 11].

Deep features [5, 6, 7, 8, 9, 10, 11, 12] are also used for ac-
tion recognition in recent years. However, the performance of
deep features does not outperform hand-crafted features sig-
nificantly because they are weak at extracting information in
time domain. Though many deep features are combined with
hand-crafted features for better performance, they can only
provide 3.6% mAP improvement compared with using hand-
crafted features only. Meanwhile, the computation is 35 times
as much, and the power consumption is 10 times as large as
hand-crafted features [13]. Hence, deep-learning-based fea-
tures have not taken down the field of action recognition.

Some hardware architectures were proposed for action
recognition [14, 15, 16]. Since features used in these works
can only encode motion information spanning at most two
frames, none of them can achieve high-performance action
recognition in benchmarks with more action classes and more
realistic environment (e.g. HMDB51, UCF101, and Holly-
wood2 datasets).

In this work, considering both performance and hardware

1115978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

implementation cost, we explore the possibility to imple-
ment a trajectory-based feature, iDT, in ASIC. We are the
first to propose a hardware-oriented algorithm and hardware
architecture of iDT. Our architecture (Fig. 1) can achieve a
throughput of 203 fps with only 40.8 kB on-chip memory.
Furthermore, it can support not only QVGA videos but also
six windows of QVGA resolution in higher resolution videos
in real time.

The remainder of this paper is organized as follow. Sec-
tion 2 overviews the Improved Dense Trajectories algorithm
and shows our reconstructed experiment results. Based on
iDT, we propose a hardware-oriented algorithm in Section 3,
and Section 4 describes the details of our architecture design.
In Section 5, we discuss our implementation result. Section 6
concludes the paper.

2. OVERVIEW OF IMPROVED DENSE
TRAJECTORIES

Improved Dense Trajectories (iDT) is proposed in [2]. It be-
comes the state-of-the-art in contributing to its four core con-
cepts, which equip iDT with the strong ability to capture long-
term motion information.
Dense Sampling. Feature points are sampled densely in both
spatial and temporal domains to ensure that feature points are
equally spread over all spatial positions and scales, and mo-
tion appearing at any time can be captured.
Trajectories and Local Spatio-temporal features. All fea-
ture points will be tracked by dense optical flow filtered by
median filter. Points tracked along 15 frames will be concate-
nated to form a trajectory. Local spatio-temporal features are
extracted from the patches centered at the points along each
trajectory, including HOG, HOF, MBHx, and MBHy. In the
following of this paper, we will call the combination of these
four types of local spatio-temporal feature as patch feature.
Camera Motion Elimination. Camera motion affects the
correctness of optical flow, and also generates trajectories in
the background region. iDT estimates the homography matrix
of two consecutive frames, and warps the second frame by
the matrix. The optical flow between these two consecutive
frames will be re-computed to represent the motion correctly.
Trajectory Pruning Trajectories that cannot represent ac-
tions will be pruned since they will introduce erroneous
information and degrade the performance.

Our reconstructed experiment uses the HMDB51 dataset,
the mean average precision (mAP) is 54.14%. The through-
put using single-core CPU is 2.5 fps, which is almost twelve
times less than the minimum requirement (30 fps) for real-
time computation. The whole flow of iDT includes the com-
putation of optical flow, warping, trajectories, and descriptors.
Since some architecture [17, 18, 19] has been proposed to im-
plement the most time-consuming step (40% of total operat-
ing time), optical flow computation, we focus on the architec-
ture design to accelerate the computation of trajectories and

Fig. 2. Illustration of trajectory-wise and frame-wise feature
extractions.

descriptors, which has not been addressed before. These two
computations are also the core of iDT, and compose the sec-
ond most time-consuming part (24% of total operating time)
of all operations.

3. HARDWARE-ORIENTED ALGORITHM

The most challenging problem in iDT is that local features
are extracted based on the trajectories, whose locations are
not predictable. This is not suitable for low-cost hardware
implementation. We propose a hardware-oriented feature ex-
traction algorithm in frame-wise scheme to take the place of
trajectory-wise scheme. The details are introduced in the fol-
lowing subsection.

3.1. Frame-Wise Feature Extraction

The original feature extraction algorithm of iDT is in trajectory-
wise scheme. The local spatio-temporal features are extracted
along the trajectories. The patches centered at the sample
points in a frame heavily overlap, and the locations of the
patches are randomly spread. Therefore, the average number
of the pixels that need to be processed is almost twenty times
the number of pixels in one frame, which introduces high
bandwidth and repeated computation in hardware design.

To reduce the bandwidth and repeated computations, we
design a histogram reuse scheme based on the commonly seen
computation flow of HOG. We first split a frame into a grid
of 8×8 sub-cells, and then extract each sub-cell histogram.
Once a tracking point shows up, the nearest 16 sub-cells will
be used to derive patch histogram, which is composed of four
concatenated cell histograms. The derivation of each cell his-
togram is to simply sum four sub-cell histograms as shown in
the bottom of Figure 2. Finally, patch feature can be obtained

1116

after applying L1-sqrt norm on patch histogram. In this way,
each pixel histogram needs to be extracted only once, and
there will be no repeated data access for overlapping patches.
In our implementation, to minimize the bandwidth and com-
putation, we decide to extract all patch features of each frame
first and then store them in off-chip memory. These patch
features will be loaded in the feature aggregation stage. This
can reduce 82% of data I/O and 98% of computation time
compared with storing sub-cell histograms in off-chip mem-
ory. Extracting all patch features first is also efficient since 12
sub-cell histograms can be reused by neighboring patches.

In our experiment results, there are only 76,800 (320×240)
pixels by frame-wise feature extraction and 1,509,011 pix-
els by trajectory-wise feature extraction to be processed per
frame in QVGA videos. Frame-wise feature extraction can
reduce the bandwidth usage and save the computation time
to 94% while only causes a 0.24% mAP loss compared with
trajectory-wise feature extraction.

4. ARCHITECTURE DESIGN

Our proposed architecture is shown in Figure 1, and is com-
posed of three parts. The first part deals with Motion and
Structure Descriptor (MSD), including HOG, HOF, MBHx,
and MBHy. The second part is Trajectory Generator (TG),
which handles point tracking and dense sampling. The third
part deals with Trajectory Shape Descriptor and Motion and
Structure Descriptors Selector (TSD-MSDS). In TSD-MSDS,
erroneous trajectories will be pruned and patch features along
15 frames will be requested and do normalization in time do-
main for final output features of iDT.

4.1. Low On-chip Memory for Point Tracking

When doing point tracking, all trajectory points that need to
be tracked require 141 kB of memory for storage, and the
flow data of a frame costs 153.6 kB. There are two types of
architecture for point tracking, described below.

The concept of the first architecture is to fully reuse input
flow data by splitting flow data in one frame into N blocks.
It only need to store one block’s flow data on chip, and the
memory size depends on N (Fig. 3(a)). However, to track all
points, we need to load all trajectory points N times since we
have to search for target flow in each block of flow data. On
the contrary, in the second architecture, both flow data and
trajectory points are stored in off-chip memory (Fig. 3(b)).
The flow data will be loaded from off-chip memory for track-
ing according to the trajectory points’ location. The drawback
of this architecture is that flow data may be loaded repeatedly
since they may belong to more than one trajectory.

To see which architecture can achieve higher throughput
and lower bandwidth, we do some numeric analysis shown in
Table 1. The analysis focuses on the number of cycles spent
on reading and writing off-chip memory.

Table 1. Comparison of off-chip memory access time (cycles)
of architecture 1 and architecture 2. The “N” in Architecture
1 represents the number of blocks that the flow data is split
into.

Architecture 1 Architecture 2
Worst case

(46,080 pts/frame) 10,971 + 18,432 × N
46,080 + 18,432
= 64512

Normal case
(8600 pts/frame)

10,971 + 1720 × 2 × N
=17581 (N=2)

8600 + 1720 × 2
=12,040

(a) Architecture 1. (b) Architecture 2.

Fig. 3. Two architectures for point tracking in TG.

The result shows that, in worst case, the first architecture
will be faster only if N<3. However, it requires a 76.8 kB
on-chip memory to store a block’s flow data when N=3. The
memory required for flow data is too much for us since our
target maximum memory size is 128 kB. In normal case, even
if we store the whole frame’s flow on chip (153.6 kB), the
first architecture is still slower than the second one. Thus, for
point tracking in current frame, we choose the second archi-
tecture, which requires less data fetching in most of the video
sequences and requires no extra on-chip memory.

Note that the number of points in normal case, 8600, is
derived from our observation of the 12 videos we randomly
choose. On the contrary, that there are 46,080 points in worst
case means that all points with a step size of 5 pixels will be
sampled in each frame, which seems unlikely to happen.

Fig. 4. Architecture of TSD-MSDS.

1117

4.2. Two-Stage Trajectory Pruning

To prune the trajectories, we need to check three require-
ments. The first requirement is that points should not be
beyond the boundary of a frame. The second requirement
is that trajectories should not be random, static, or irregular.
The third requirement is that trajectories should not be gen-
erated from camera motion. The first two requirements can
be checked by points in trajectories, but the validation of the
third requirement needs extra 15 cycles to load warped flow
from off-chip memory. According to our analysis of the distri-
bution of the cause of pruned trajectories, 10% of the pruned
trajectories can be detected by the first requirement, and 66%
of the pruned trajectories can be detected by the second re-
quirement. This means that loading warped flow for checking
the third requirement is unnecessary most of the time. Hence,
we decide to split the pruning process into two stages (Fig.
4). In the first stage, we check the first (stage 1-1) and second
(stage 1-2) requirements, and valid trajectories will be marked
in a list. Once the first stage is finished, only marked trajec-
tories in the list will proceed to stage 2. If a trajectory passes
the second stage, it will go on to request its patch feature for
final feature normalization (MSDS).

Early terminations in our two-stage trajectory pruning can
save 30% of the time spent on loading warped flow for check-
ing the third requirement in parallel pruning, where all three
requirements are checked simultaneously.

5. HARDWARE IMPLEMENTATION RESULT

We implement our design using TSMC 40nm technology. Ta-
ble 2 summarizes the final specification of our implementa-
tion. The chip area is 3.1 mm2, and the throughput is 127
fps in worst case and 203 fps in normal case when operat-
ing under the frequency of 215 MHz. The total gate count is
476.42k for logic. The size of on-chip memory is 40.8 kB.
The bandwidth is 2.4 GB/s. Such a high bandwidth is mainly
introduced by loading and writing patch features, especially
when collecting patch features in the past 15 frames. The
performance of our chip on the HMDB51 dataset is 51.34%
mAP, where a 3% mAP drop in our reconstructed experiment
is introduced by our hardware-oriented algorithm. The final
chip layout is shown in Figures 5.

With our final specification, we can also deal with videos
in higher resolution. For videos with a single target, we re-
size each frame to a width of 320 pixels since tasks related to
classification do not require high-resolution frame for better
performance, which is proved by [20]. For videos with mul-
tiple targets, we can propose N windows containing humans,
and then resize them to a width of 320 pixels. A possible ro-
bust method for window proposal is YOLO [21]. In this way,
we can achieve 31.75 fps for N=4 in worst case, and 33.8 fps
for N=6 in normal case.

Since there is no existing work implementing trajectory-

based features, where features are extracted from more than
10 frames in general, we can only compare our final specifi-
cation with software implementation. Our software platform
is a PC with a 3.40 GHz quad-core CPU and 20 GB RAM.
However, we only use a single core of the CPU. The result
shows that the throughput of our design is 81.2 times as large,
and the power efficiency is 13,340 times as large.

Table 2. Final chip specification. “*” represents normal case.

iDT
Technology TSMC 40nm
Chip Area 1.76 mm × 1.76 mm = 3.1 mm2

Frequency 200 MHz
Gate Count 476.42k

Memory 40.8 kB
Bus Width 128 bits

Throughput (fps) 127 / 203 *
Throughput (track/s) 390k / 624k *

Bandwidth 2.4 GB/s
Power Consumption 58.44 mW

Fig. 5. Chip layout of Improved Dense Trajectories.

6. CONCLUSION

We are the first to propose a hardware-friendly algorithm and
an ASIC implementation of Improved Dense Trajectories for
real-time action recognition.

With our high throughput, low on-chip memory and com-
putation flexibility, our chip can be applied to many real-time
applications on mobile devices or be combined with deep
learning engines to implement state-of-the-art action recog-
nition systems.

1118

7. REFERENCES

[1] H. Wang, A. Klser, C. Schmid, and C. L. Liu, “Action
recognition by dense trajectories,” in CVPR 2011, 2011,
pp. 3169–3176.

[2] Heng Wang and Cordelia Schmid, “Action recogni-
tion with improved trajectories,” in The IEEE Interna-
tional Conference on Computer Vision (ICCV), Decem-
ber 2013.

[3] Xiaojiang Peng, Changqing Zou, Yu Qiao, and Qiang
Peng, Action Recognition with Stacked Fisher Vectors,
pp. 581–595, Springer International Publishing, Cham,
2014.

[4] B. Fernando, E. Gavves, J. Oramas M., A. Ghodrati, and
T. Tuytelaars, “Rank pooling for action recognition,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 39, no. 4, pp. 773–787, 2017.

[5] Christoph Feichtenhofer, Axel Pinz, and Andrew Zis-
serman, “Convolutional two-stream network fusion for
video action recognition,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2016.

[6] César Roberto de Souza, Adrien Gaidon, Eleonora Vig,
and Antonio Manuel López, Sympathy for the Details:
Dense Trajectories and Hybrid Classification Architec-
tures for Action Recognition, pp. 697–716, Springer In-
ternational Publishing, 2016.

[7] Hakan Bilen, Basura Fernando, Efstratios Gavves, An-
drea Vedaldi, and Stephen Gould, “Dynamic image net-
works for action recognition,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2016.

[8] Amlan Kar, Nishant Rai, Karan Sikka, and Gaurav
Sharma, “Adascan: Adaptive scan pooling in deep con-
volutional neural networks for human action recognition
in videos,” CoRR, vol. abs/1611.08240, 2016.

[9] Limin Wang, Yu Qiao, and Xiaoou Tang, “Action
recognition with trajectory-pooled deep-convolutional
descriptors,” in The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2015.

[10] Junjie Cai, Michele Merler, Sharath Pankanti, and
Qi Tian, “Heterogeneous semantic level features fusion
for action recognition,” in Proceedings of the 5th ACM
on International Conference on Multimedia Retrieval,
2015, ICMR ’15, pp. 307–314.

[11] J. Wang, A. Cherian, and F. Porikli, “Ordered pooling of
optical flow sequences for action recognition,” in 2017
IEEE Winter Conference on Applications of Computer
Vision (WACV), 2017, pp. 168–176.

[12] Y. Shi, Y. Tian, Y. Wang, and T. Huang, “Sequential
deep trajectory descriptor for action recognition with
three-stream cnn,” IEEE Transactions on Multimedia,
vol. 19, no. 7, pp. 1510–1520, 2017.

[13] Amr Suleiman, Yu-Hsin Chen, Joel S. Emer, and Vivi-
enne Sze, “Towards closing the energy gap between
HOG and CNN features for embedded vision,” CoRR,
vol. abs/1703.05853, 2017.

[14] Hongying Meng, Michael Freeman, Nick Pears, and
Chris Bailey, “Real-time human action recognition on
an embedded, reconfigurable video processing architec-
ture,” Journal of Real-Time Image Processing, vol. 3,
no. 3, pp. 163–176, 2008.

[15] Zuoxun Hou, Hongbo Zhu, Nanning Zheng, and
Tadashi Shibata, “A single-chip 600-fps real-time ac-
tion recognition system employing a hardware friendly
algorithm,” in Circuits and Systems (ISCAS), 2014 IEEE
International Symposium on. IEEE, 2014, pp. 762–765.

[16] Xiaoyin Ma, Jose Rodriguez Borbon, Walid Najjar, and
Amit K Roy-Chowdhury, “Optimizing hardware design
for human action recognition,” in Field Programmable
Logic and Applications (FPL), 2016 26th International
Conference on. IEEE, 2016, pp. 1–11.

[17] H. S. Seong, C. E. Rhee, and H. J. Lee, “A novel hard-
ware architecture of the lucas–kanade optical flow for
reduced frame memory access,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 26, no.
6, pp. 1187–1199, 2016.

[18] K. Seyid, A. Richaud, R. Capoccia, and Y. Leblebici,
“Fpga based hardware implementation of real-time op-
tical flow calculation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. PP, no. 99, pp.
1–1, 2016.

[19] Gokhan Koray Gultekin and Afsar Saranli, “An fpga
based high performance optical flow hardware design
for computer vision applications,” Microprocessors and
Microsystems, vol. 37, no. 3, pp. 270 – 286, 2013.

[20] Heng Wang, Dan Oneata, Jakob Verbeek, and Cordelia
Schmid, “A robust and efficient video representation for
action recognition,” International Journal of Computer
Vision, vol. 119, no. 3, pp. 219–238, 2016.

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi, “You only look once: Unified, real-time
object detection,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

1119

