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ABSTRACT
This paper presents a unique real-time motion recognition
system for Electromyographic (EMG) signal acquisition
and classification. It is the first approach which can clas-
sify hand poses from multi-channel EMG signals gathered
from randomly placed arm sensors as accurately as cur-
rent placed-sensor EMG acquisition approaches. It combines
time-domain feature extraction, Linear Discriminant Analysis
(LDA) feature projection and Multilayer Perceptron (MLP)
classification to allow nine distinct poses to be correctly iden-
tified more than 95% of the time. This is comparable to
state-of-the-art placed-sensor EMG acquisition systems. Pro-
cessing times of 11.70 ms also make this a viable candidate
approach for real-time EMG acquisition and processing in
practical prosthesis applications.

Index Terms— Electromyographic (EMG), time-domain
features, pattern recognition, linear discriminant analysis
(LDA), multilayer perceptron (MLP).

1. INTRODUCTION

Electromyographic (EMG) sensing and classification is a
popular method for the control of bionic hand units and a
lot of research has studied techniques for discriminating be-
tween EMG signals to allow a variety of hand poses to be
told apart [1–3]. This has led to a series of commercial
and research products, such as the Ottobock [4], Becker [4],
Steeper [4], and Sensor [4] hands and the open source under-
actuated robotic hand [4] which offer around nine degrees of
freedom [4]. Whilst well short of the 27 degrees of freedom
in the human hand, these still represent the state of the art in
EMG-driven bionic hand technology.

These approaches all require skilled placement of sensors
on the skin, over specific arm muscles [5]. This requires
knowledge of muscle structure and expert handling for sen-
sor placement, making these systems difficult to install. The
signal processing approaches which translate the signals gath-
ered from these sensors to movements of the hand are heavily
reliant on this exact sensor placement over the muscles re-
sponsible for movement [6–9].
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Nowadays, commodity EMG acquisition systems which
are easy to install and do not require any prior knowledge of
sensor placement are becoming widely available [10]. These
systems randomly place multiple sensors on the skin’s sur-
face. However, whilst some work has shown how this ap-
proach can enable highly primitive differentiation of poses
[10] their capabilities are well short of those of placed-sensor
systems [6–9].

This paper presents an EMG acquisition and classifica-
tion approach which overcomes this shortcoming. Relying on
commodity EMG acquisition hardware providing 8-channel
EMG signals from randomly placed sensors, it shows how
wrist flexion-extension, pronation-supination, ulnar flexion-
radial flexion and hand open-close motions incorporating 4
degrees of freedom can be classified with 95.57% accuracy
- comparable with the leading placed sensor approaches on
record. It also enables classification in less than 12ms on a
workstation PC, indicating it’s potential to support real-time
classification in practical prosthetic equipment.

Section 2 survey the state-of-the-art in EMG acquisition
and classification techniques, before Section 3 presents our
proposed approach for randomly-placed sensing setups, the
performance of which is analysed in Section 4.

2. RELATED WORK

In recent years, researchers have studied differentiating be-
tween nine wrist-hand motions using a variety of different
EMG acquisition and classification approaches [6–9, 11, 12].
These studies use a range of pattern-recognition techniques
to evaluate feature vectors from EMG signals with feature
projection and classification methods for discriminating dis-
tinct classes [9, 11, 12]. The approach in [6] uses the Del-
sys myoelectric system for EMG acquisition through placed
sensors from four forearm muscles and classify the different
wrist-hand motions. It uses Local Discriminant Basis (LDB)
with Wavelet Packet Transform (WPT) for feature extraction
along with Principal Component Analysis (PCA) and MLP
for feature projection and classification. In [7], the Ottobock
system is used for EMG acquisition from two forearm mus-
cles using active placed sensors to classify three hand mo-
tions using 1D Local Binary Pattern (LBP) feature extrac-
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tion. The work in [8] uses four placed MyoScan EMG sen-
sors over forearm muscles for EMG acquisition to classify
four hand motions using the combination of time and fre-
quency domain features with PCA and LDA for feature pro-
jection and classification. In [9], an array of eight passive
electrodes are placed on the forearm, with time domain fea-
tures provided to a Support Vector Machine (SVM) classi-
fier for eight wrist-hand motions. The approach in [11] uses
four placed passive electrodes on the upper forearm to ex-
tract EMG signals for eight wrist-hand motions with different
time-domain features, PCA feature projection and LDA clas-
sification. This body of work shows that significant numbers
of wrist-hand movements can be differentiation using a multi-
channel placed-sensing approach. According to [4], time-
frequency analysis using features derived from wavelet trans-
forms, Wavelet Packet Transforms (WPTs) or fourier trans-
forms are particularly promising. These produce feature vec-
tors in high-dimensional space [4, 6, 13] with subsequent fea-
ture projection to classification. Generally, PCA and LDA
have been used for efficient dimensionality reduction and pro-
jection in EMG signal analysis [9, 11]. For classification, Ar-
tificial Neural Network (ANN) [4], MLP [6], SVM [9] and
LDA [11] has been used to enable the best results to date.
However, none of these approaches have been studied when
randomly-placed multi-channel EMG sensing is employed.

3. CONCEPT APPROACH

We aim to develop an EMG acquisition and classification
approach for commodity multi-channel EMG sensing equip-
ment employing randomly placed sensors whilst supporting
classification of as many (nine) wrist-hand movements, as
accurately as current placed-sensor systems. EMG sensing is
enabled by the wireless Myo Armband, which employs active
surface electrodes to measure the EMG signals from the mus-
cles viz. extensor carpi ulnaris, extensor digitorum, extensor
carpi radialis, extensor carpi longus, flexor carpi radialis,
palmaris longus, pronator teres and flexor carpi ulnaris [14].

As described in Section 2, most current approaches [4, 6,
13] use time-frequency analysis of the EMG signals. This
time-frequency approach is adopted because the EMG sig-
nals eminating from the muscles over which the sensors are
placed is contained within different frequency bands, and dis-
tinguishable from each other at each sensor [14]. In the case
of randomly placed sensors, this is not the case - here, all sen-
sors produce composites of the signals produced by all mus-
cles. Hence, frequency domain analysis is inappropriate in
the random-sensing case. Instead, we use a time-domain ap-
proach, composed of:

1. Augmented 7th order auto-regressive feature extraction

2. LDA-based supervised feature projection

3. An MLP classifier employing three hidden layers

The LDA-based feature projection and MLP classifier are re-
spectively motivated by the observations on the effectiveness
of these approaches in [11, 13] and [6]. The overall struc-
ture of our proposed simplified EMG hand motion recogni-
tion system is shown in Fig. 1.

3.1. EMG Acquisition

The Myo Armband has 8 active surface EMG sensors which
measure the electric potential of the muscles as an effect of
muscle activation while performing hand motion with a sam-
pling frequency (fs) of 200 Hz per channel [10]. The place-
ment of Myo armband dependent on subject’s forearm size
due to the minimum circumference of the Myo i.e. 19.05
cm [10]. Hence, we install the armband on the upper fore-
arm so as to consider the maximum hand surface wherein the
muscles are well sorted. In our work, we have considered
all possible wrist-hand motions viz. opening and grasping of
the fingers, flexion and extension of the wrist, pronation and
supination of the wrist, radial and ulnar flexion of the wrist,
and relaxation.

3.2. Feature Extraction

We have proposed the use of time domain analysis with auto-
regression model for feature extraction since the acquired
EMG signals are composite mixtures of EMG emissions by
the muscles being used ref13. A single time domain feature
is not enough to extract adequate information from the sig-
nal and identify the intended motion properly [13]. Hence,
we use three classes of time-domain features - Integrated
EMG (IEMG), log root mean square, Kurtosis and 7th order
auto-regressive model features.

3.2.1. Integrated EMG

Integrated EMG is commonly used for onset detection index
in EMG for measuring variation in muscle strength [13]. It
is related to the EMG signal sequence firing point and is de-
fined as a summation of absolute values of the EMG signal
amplitude, which is expressed as,

IEMG =

N∑
t=1

| x [t] | (1)

where x [t] represents the EMG signal in the tth time frame
and N denotes total number of time frame of EMG signal.

3.2.2. Root Mean Square

The root mean square value is used to represent the non-
fatiguing contraction levels of the muscle in each time analy-
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Fig. 1. Proposed EMG acquisition and motion recognition system

sis framework [13]. It is expressed as,

RMS =

√√√√ 1

N

N∑
t=1

x [t]
2 (2)

3.2.3. Kurtosis

Kurtosis is a measure of how outlier-prone distribution is. The
distributions that are more outlier-prone than the normal dis-
tribution have kurtosis greater than 3, and those less outlier-
prone have kurtosis less than 3 [15]. It is expressed as,

k =
E [x− µ]4

σ4
(3)

where µ is the mean of x, σ is the standard deviation of x, and
E[t] represents the expected value of the quantity t.

3.2.4. Auto-Regressive Model

An auto-regressive model, popularly used to represent ran-
dom processes, describing each sample of the signal as a sum
of linear combination of previous samples plus an error term
representing the white noise [4]. It is expressed as:

A(t) =

P∑
p=1

apx [t− p] + w [t] (4)

where x [t] represents the EMG signal, ap is each of AR co-
efficients, w [t] is the white noise term and P is the order of
the AR model (7 in our case). After fitting the auto-regressive
model, the AR coefficients are used as part of our feature vec-
tor.

3.3. Feature Projection and Classification

Feature projection is an essential complement after feature ex-
traction to remove dimensional redundancy in the features de-
rived [6–8]. It also makes classification more reliable and ef-
ficient [11]. Mostly, LDA is used to determine the dimension-
ality of projected features in EMG signal analysis [6–8, 11].
LDA is a supervised feature projection technique which takes
time-domain features and class labels as an input [11]. To
calculate the optimal class separation, resulting in mapping

the features into a lower-dimensional space [11, 16], it maxi-
mizes the between-class distance and concurrently minimizes
the within-class distance which achieves maximum discrim-
ination [11, 16]. By applying LDA to our pipeline, the ex-
tracted 10-dimensional time-domain feature vectors are pro-
jected into an 8-dimensional subspace where classification is
potentially easier.

After the feature projection, the projected features are
given to the input layer of MLP classifier. The MLP is con-
figured with three hidden layers with forty-four neurons and
the output layer has nine neurons, one for each of the nine
hand motions to be recognised. The selection criterion was
based on the convergence of the learning error from different
combinations. The input of the MLP are the normalized value
of the LDA output. Weights and bias were initialised before
training from a uniform distribution with a mean and variance
of 0 and 1, respectively. The learning process was stopped
when the absolute rate of change in the average squared error
per iteration was sufficiently small. In testing, the maximum
output of the MLP was selected as the recognized motion for
a given LDA feature vector.

4. EXPERIMENTAL RESULTS

To gauge the effectiveness of our proposed approach, exper-
iments were conducted on ten normal subjects (seven males
and three females, 26 ± 4 years) for EMG data recording.
Twenty sessions of EMG recording were conducted from
each subject. The first ten sessions were used for classifier
training, with the remaining ten sessions used for testing.
In every session, each motion was executed once for a du-
ration of 5 sec, before the next, in a fixed order. To recog-
nize a steady-state motion, a moving window scheme with
increment window is applied. The increment window is de-
termined based on considering the processing time of the
pattern-recognition algorithm. Each window will produce a
feature vector with a class label for the feature projection and
classification. In our work, the length of the moving window
is set to 250 msec with a 125 msec window increment, thus,
allowing the proposed scheme to make two decisions within
300 msec.

The performance of the system is tested with the same 10
subjects and the extracted time-domain features then tested
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Table 1. Classification results for different motions
Classification Accuracy (%)

Motion Time-domain Time-freq
LDA PCA LDA PCA

Hand open 97.50 90.60 76.00 54.20
Hand close 97.70 43.40 80.50 41.60
Wrist flexion 97.60 38.50 77.30 38.90
Wrist extension 95.10 36.30 70.50 35.40
Wrist pronation 90.80 32.70 61.90 30.30
Wrist supination 94.90 47.50 72.40 36.50
Wrist ulnar flexion 91.30 36.80 64.70 32.60
Wrist radial flexion 96.80 48.10 75.10 37.80
Relaxation 98.40 78.90 76.80 65.90
Total 95.57 50.31 72.80 41.47

in the trained MLP classifier. Initially, the system perfor-
mance is calculated considering only AR feature set (FS1)
with LDA feature projection and MLP classifier which results
in 90.48% average classification accuracy for 10 sessions of
the test dataset. Further experiments, adding a single new
time-domain feature are conducted, and the classification re-
sults are evaluated. FS2 comprise of AR and IEMG, FS3 of
AR, IEMG and kurtosis, and FS4 including AR, IEMG, kur-
tosis and Log RMS features. The best classification result, for
FS4, was found to be 95.57% . The classification accuracy for
different feature sets is illustrated in Fig. 2.

Fig. 2. Classification results of different feature sets

To verify the effectiveness of our choice of time-domain
analysis (FS4), we compared the results with the leading time-
frequency feature extraction method on record (WPT) [6, 17]
considering both possible LDA and PCA feature projection
with MLP classification technique. Table 1 presents the
classification results for nine wrist-hand motions using time-
domain and time-frequency features with LDA and PCA fea-
ture projection techniques keeping MLP feature classification
constant.

The overall classification accuracy using our proposed

time-domain approach with LDA is calculated as 95.57%.
This compares very favourably with the leading placed-
sensor approaches on record [6–9], which classify the same
nine movements with accuracy between 92.50% − 97.65%.
When PCA is used in placed of LDA for feature projection,
performance reduces to 50.31% on average, justifying the
use of LDA. Similarly, when time-frequency features are em-
ployed, specifically WPT in this case, performance reduces to
72.80% in the case of LDA-based classification and 41.47%
when PCA is used, justifying our approach of adopting time-
domain analysis.

The experiments were executed in MATLAB R2016a
platform on a 3.6 GHz Core i7 PC. Thus, to implement real-
time pattern recognition system, the processing time should
be less than the window increment, which is 125 ms in our
case. Table 2 describes the average processing time taken by
various feature analysis techniques in our pattern recognition
system. Hence, it shows that the overall processing time
of our pattern recognition system is 11.70 ms which is less
then window increment time and thus, can be considered for
real-time EMG system implementation.

Table 2. Processing time for pattern recognition system
Processes Processing time (ms)
Feature extraction 6.20
Feature projection 2.60
Feature classification 2.10
Others 0.80
Total 11.70

5. CONCLUSION

In this paper, we have proposed a novel approach for EMG
acquisition and feature extraction to detect active wrist-hand
motions. The use of Myo Armband for EMG acquisition
placed randomly on the forearm without any expert handling
make the system wirelessly accessible and reduce the devel-
opment cost to one tenth. The robust feature set is the com-
bination of auto-regression and three set of time-domain fea-
ture coefficients. The MLP classifier with LDA feature pro-
jection was used to detect intended wrist-hand motion. From
experiments of time-domain feature selection, it was shown
that the classification result highly depends on selected fea-
ture set, in a manner that complements the system processing
time. The proposed EMG pattern-recognition approach for
different wrist-hand motions gives 95.57% classification ac-
curacy which is an excellent compromise between computa-
tional performance and accuracy when compared with com-
plex time-frequency approach. The overall processing time
of system was calculated to be 11.70 ms in our prototype,
making it possible to use in real time applications. Moreover,
it has benefits of using simplified time-domain analysis mak-
ing it conventional in real-time hardware implementation with
high computational efficiency.
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