
EFFICIENT DEEP CONVOLUTIONAL NEURAL NETWORKS ACCELERATOR WITHOUT
MULTIPLICATION AND RETRAINING

Weihong Xu1,2,3, Zaichen Zhang2,3, Xiaohu You2, and Chuan Zhang1,2,3,∗

1Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS)
2National Mobile Communications Research Laboratory, Southeast University

3Quantum Information Center of Southeast University, Nanjing, China
Email: {wh.xu, zczhang, xhyu, chzhang}@seu.edu.cn

ABSTRACT

Recently, low-precision weight method has been considered
as a promising scheme to efficiently implement inference of
deep convolutional neural networks (DCNN). But it suffers
from expensive retraining cost and accuracy degradation. In
this paper, a low-bit and retraining-free quantization method,
which enables DCNNs to deal inference with only shift and
add operations, is proposed. The efficiency is demonstrated
in terms of power consumption and chip area. Huffman cod-
ing is adopted for further compression. Then by exploring
two-level systolic, an efficient hardware accelerator is intro-
duced with respect to the given quantization strategy. Exper-
iment results show that our method achieves higher accuracy
than other low-precision networks without retraining process
on ImageNet. 5× to 8× compression is obtained on popu-
lar models compared to full-precision counterparts. Further-
more, hardware implementation indicates good reduction of
slices whereas maintaining throughput.

Index Terms— Deep neural networks, hardware acceler-
ation, systolic, low-precision weights.

1. INTRODUCTION

Deep convolutional neural networks (DCNNs) push various
complex tasks a step further, including image recognition [1–
4], machine translation, baseband processing [5], and so on.
DCNNs show stronger competitiveness driven by up-to-date
large scale datasets, such as ImageNet [6]. The deployment of
DCNNs is divided into training and inference. Being trained,
DCNN inference is crucial in commercial applications.

State-of-the-art DCNNs achieve superior performance
partly through increasing the network scale. Consequently,
tremendous computing and storage resources are required in
both training and inference phases. Thus, efficient imple-
mentations have attracted many attentions [7,8]. Focusing on
efficiently performing the inference and model compression,
a lot of work has been done based on low-precision weights
representation. The low-precision representation allows the

hardware to implement multiply-accumulate (MAC) oper-
ation without bulky multipliers. [9] proposes a method to
perform training and inference with binary weights and acti-
vations. XNOR-Net in [10] evidently reduces the storage and
computation complexity by binarizing inputs and weights. To
improve binary scheme [9], ternary weight networks (TWNs)
in [11] adopts ternary weights with +1, 0, and −1.

However, existing low-precision methods need costly re-
training to regain the accuracy, which may take months even
with high-performance servers. Moreover, the fine-tuning for
DCNNs is complicated. Although [12] presents a 5-bit quan-
tization method in log-domain, the accuracy degradation is
still obvious. Hence, a retraining-free, low-complexity, and
high-accuracy DCNN inference is highly required.

In this paper, the problems are well solved by using non-
uniform quantization. The key contributions are as follows:

• We propose an retraining-free and low-quantization scheme
on the basis of [13] through exploiting the redundancy of
original method and DCNN weights.

• We propose a novel DCNN accelerator with two-level sys-
tolic structure, which is multiplication-free in inference.

• We demonstrate the high accuracy and 5× to 8× compres-
sion rate of proposed low-precision quantization scheme
on state-of-the-art DCNN models.

2. PRELIMINARIES

A deep convolutional neural network (DCNN) is built by it-
eratively stacking functional layers: convolution layer (CON-
V Layer), pooling layer, and fully-connected layer (FC Lay-
er). For an input feature map (ifmap) of a single channel, the
CONV layer performs convolution of input feature map with
Kw ×Kh filters, whose output feature map (ofmap) is:

Oconv
x,y =

Kw−1∑
i=0

Kh−1∑
j=0

wconv
i,j ∗ xconv

x+i,y+j + bconv, (1)

where wconv ∈ RKw×Kh denotes the filter weights of CONV
layer and xconv ∈ RNw×Nh is the ifmap. Note that the bias
bconv is optionally added to the result.

1100978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

3. EFFICIENT NON-UNIFORM QUANTIZATION
AND COMPRESSION SCHEME

3.1. Quantization

In general, DCNN parameters can be expressed by the tensor
form W ∈ RC×W×H , where C is the channels of this tensor.
Similar to [13], the binary representation of DCNN weights is
divided into N segments. The n-th segment, containing Bn

bits, is the index of quantization value in the n-th codebook.
Thus, the i-th entry wi of W can be quantized as:

ŵi =

N∑
n=1

ϕn [idxi,n] , (2)

where ϕn is the n-th codebook and idxi,n denotes the n-th
segment of ŵi. There are N codebooks in total.

Instead of directly quantizing the original weights into s-
ingle binary sequence, the scheme in Eq. (2) implements
quantization through looking up the codebooks. Each se-
quence stores N different indexes of codebooks. Hence, the
length is L (L =

∑N
n=1 Bn) bits.

To realize efficient inference for DCNN, the codebook ϕ
is constructed by the power of 2 and zero, which can be con-
veniently calculated by shift operation. Different from [13],
the codebooks in this paper only include the negative power of
2 by removing all the positive power part. This is because the
DCNNs parameters are near normal distributed within range
[−1,+1] after normalization. The positive power part of 2 is
redundant in this case. Besides, we add an offset value βn

to each codebook to compensate the precision loss. Fig. 1
illustrates the distribution of codebook index of first FC layer
in VGGNet-16. The lines depict the approximate distribution
of index value. It indicates that the indexes of different code-
books vary in range. The offset helps to cover wider range
of weights under low quantization bits compared to original
scheme. The n-th codebook structure can be represented as:

ϕn =
[
0, 2−1−βn , 2−2−βn , ..., 2−(2Bn−1)−βn

]
, (3)

where there are total 2Bn entries in each codebook.
The offset βn in codebooks is adaptively selected to

achieve optimal quantization precision. Mean squared error
(MSE) is adopted to evaluate the fitness for a specific βn. The
quantization MSE is defined as:

QMSE =
1

I

I−1∑
i=0

||ŵi − wi||2, (4)

where I is the total number of weights in a layer.
Thus our goal is finding the optimal βn combination to

minimize QMSE:

βn = argmin
βn

1

I

I−1∑
i=0

||ŵi − wi||2, (5)

where the optimal βn can be obtained by the greedy search.

3.2. Compression

After the weights are quantized by proposed method in Sec-
tion 3.1, some redundancy can be exploited to further com-
press the model. From Fig. 1, it can be seen that the index
is not uniformly distributed. Hence, it is potentially to shrink
the model size by some simple compression method.

Index Value

Fig. 1: Distribution of index idx for ϕ (N = 2, B = 4).

Since the occurrence probability of codebook index is
fixed after the DCNN model is quantized, we take the advan-
tage of lossless Huffman coding [14] that assigns variable-
length code to encode the codebook index idxi,n.

3.3. Efficient Multiply-accumulate (MAC) Operation

One essential advantage of proposed non-uniform quantiza-
tion method is low computation complexity. Instead of using
bulky multiplier, the multiplication can be calculated by shift
and addition. The MAC operation can be presented as:

y = ŵi ∗ xi + b =

N∑
n=1

ϕn [idxi,n] ∗ xi + b. (6)

Since the elements of codebook are all the power of 2 or
zero, the fixed-point MAC operation is replaced with shift and
addition. One multiplication with shift and addition requires
N shift and N − 1 addition when we have N quantization
codebooks. Therefore, one shift-add MAC requires N shift-
s and N additions. N is chosen as 2 of this paper. Table
1 compares the normalized energy and area cost of a 16-bit
MAC unit under commercial 90 nm process. Shift-add MAC
achieves significant reduction in both power and chip area.
Table 1: Comparison of normalized energy and area cost for
a 16-bit MAC unit with 90nm technology.

Power Area
Shift-add MAC 1× 1×

Fixed-point MAC 7.3× 14.5×

4. DCNN ACCELERATOR DESIGN

In this section, the efficient hardware design of DCNN accel-
erator is introduced based on the proposed non-uniform quan-
tization method.

1101

4.1. System Overview

Fig. 2 shows the overall block diagram of proposed DCNN
accelerator, consisting of a two-level systolic array, on-chip
buffer and Huffman coding module. Note that the control log-
ic is omitted in the figure. Inspired by [15], the vital part of
proposed design is the two-level systolic array that will be
described in next section.

O
ff-

c
h
ip

 D
R
A

M

H
u
ffm

a
n

O
n

-
c
h
ip

 B
u
ffe

r

 FPGA

A
X
I In

te
rfa

c
e

Filters

Two-level Systolic Array
Ifmap

Ofmap

. . .

. . .

. . .

. . . PE

PE

PEPE

PE

PEPE

PE

PE

PE PE

Fig. 2: Overall diagram of proposed DCNN accelerator.

The pre-trained model is preprocessed on CPU platform.
After quantization and compression, the parameters of DCN-
N are stored on the off-chip DDR3 DRAM. Huffman coding
module decodes compressed data from off-chip DRAM and
then send it to on-chip buffer. The on-chip buffer is used as
the cache of ifmaps, filters and ofmaps.

4.2. Two-level Systolic Design

The two-level systolic design is divided into two levels: the
2D systolic array and 1D systolic processing element (PE).
The 2D systolic array contains 14 × 14 PEs. The two-level
systolic design is regular and simple, which achieves good
balance between data movement cost and computation. Pro-
posed quantization strategy simplifies one MAC operation in-
to two shift operation and two addition, enabling us to imple-
ment more basic computing cells in a single PE.

Processing Element

Cell Cell

Ifmap
Reg Xout

Yout

Filter
Reg

...
Xin

Win

Yin

wi-1

>>
xi-1

wi

xi

>>

ě

yi

yi+1

xi+1

Psum
Reg

Fig. 3: Block diagram of processing element (PE).

PE is the first-level systolic that implements 1D convolu-
tion with 5 basic cells. These cells are organized in the man-
ner illustrated as Fig. 3, each containing a aforementioned
shift-add MAC. According to [16], reducing high level mem-

ory access like off-chip buffer can reduce the power consump-
tion caused by data movement. Hence, to reduce direct read-
ing from off-chip DRAM, the filter weights are stored in the
registers of PEs separately and stay still in cells while ifmap
pixels and partial sums move systolically from left to right.

On-chip
Buffer

Ifmap
Buffer

Filter
Buffer

Ofmap
Buffer

PE PE PE ... PE

PE PE PE ... PE

PE PE PE ... PE

PE PE PE ... PE

...

...

...

...

FIFO

FIFO

FIFO

F
IF

O

F
IF

O

F
IF

O

F
IF

O

. . .

. . .

Max Pooling/ReLU/Sparse Ofmap

FIFO

Systolic
Array

Fig. 4: Block diagram of systolic array.

Systolic Array is the second-level systolic that aims to
reduce high-level data access. To maximize data reuse, PEs
are organized in the grid form of Fig. 4, where adjacent PEs
are connected by the illustrated pattern. The ifmap and filter
FIFOs (First In First Out) fetch the input data from on-chip
buffer. The FIFOs in the leftmost and uppermost broadcast
filter weights and ifmap data to each PE in the same row or
column, respectively. The intermediate partial sum is cached
in the buffer on the bottom of the array. After the ofmap is cal-
culated, max pooling and ReLU are optionally applied. The
sparsity of ofmap is exploited by storing the ofmap in the s-
parse matrix form.

5. EXPERIMENT RESULTS

In this section, proposed non-uniform quantization scheme is
first evaluated on popular DCNN models. Then performance
analysis of hardware implementation is also shown.

5.1. Evaluation on ImageNet

Evaluation is conducted based ImageNet [6] validation
dataset, which has 1000 object classes with 50, 000 im-
ages. We use pre-trained DCNN models available from [17],
including AlexNet [1], VGGNet-16 [2] and ResNet-18 [3].
Proposed quantization method is compared with other low-
precision schemes as well as corresponding 32-bit full-
precision baselines. Different combinations of codebook
number N and index length Bn are tested and the offset βn is
selected adaptively by aforementioned rules. Separated offset
β are applied to quantize each layer (CONV layer and FC
layer). As a result, we don’t observe much gain when N > 2

1102

Table 2: Validation of various low-precision schemes on ImageNet.

Model Method Bit-width Top-1/top-5 Accuracy Degradation Retraining

AlexNet [1]
Baseline 32 56.55%/79.09% −/− No
Proposed (3,3) 54.98%/77.89% −1.57%/− 1.20% No

LogNet [12] 5 −/74.6% −/− 3.70% No

VGGNet-16 [2]
Baseline 32 71.59%/90.38% −/− No
Proposed (3,3) 69.36%/88.43% −2.23%/− 1.95% No

Fixed-point 16 68.01% / 87.89% −3.58%/− 2.49% No

ResNet-18 [3]

Baseline 32 69.76%/89.08% −/− No
Proposed (3,3) 67.79%/87.91% −1.97%/− 1.17% No

ShiftCNN [13] (4, 4) 64.24%/85.79% −3.21%/− 2.05% No
TWNs [11] 2 65.30%/86.20% −2.56%/− 1.80% Yes

† Top-1/top-5 error are tested with single center crop. Degradation is taken from original papers.

and B > 4. Hence, N = 2, B1 = B2 = 3 are selected.

AlexNet VGGNet-16 ResNet-34
0

1

2

3

4

5

6

7

8

N
or

m
al

iz
ed

 M
od

el
 S

iz
e

8.25x

7.41x

5.33x

1.55x 1.39x 1.51x
1.00x 1.00x 1.00x

Baseline
Q
Q+Huffman

Fig. 5: Compression of model size with proposed quantiza-
tion scheme (Q: Quantization).

Table 2 summarizes the detailed results. Compared with
full-precision DCNN, acceptable degradation is introduced
by our quantization scheme. Besides, this scheme is simple
and easy to operate, which saves lots of time and computing
resources without retraining. The other advantage of the pro-
posed quantization scheme is the dramatic reduction of inten-
sive storage requirement. Fig. 5 shows the compression ef-
fect on floating-point models after adopting quantization and
Huffman coding. As a result, 5× to 8× model compression is
obtained.

5.2. Performance Analysis

The DCNN acceleration design combined with proposed
quantization method is implemented on Xilinx Virtex-7
VC709 FPGA platform with Virtex-7 XC7VX690T chip.
We compare the convolution computation of our accelerator
with up-to-date designs in Table 3. VGG-16 is adopted in our
test. Notably, proposed design consumes zero DSP modules,
benefiting from the low bit-width shift-add MAC. The other
costing slices is also apparently much less than [18] and [19].

Table 3: Performance comparison of various CNN accelera-
tion designs on FPGA.

Design [18] [19] This work

Platform
Zynq Virtex-7 Virtex-7

XC7Z045 VX690t VX690t
Clock(MHz) 150 150 150

Quantization 16-bit fixed 16-bit fixed (3,3)

LUT 186, 251 ≈ 300, 000 107995

FF 127, 653 ≈ 300, 000 117795

DSP 2240 2833 0

BRAM 1024 1248 1279

Throughput (GOP/s) 187.8 636.0 238.2

6. CONCLUSION

This paper presents a DCNN acceleration strategy with low
complexity and promising performance. We first introduce a
low-precision and retraining-free quantization scheme, which
removes multiplication during DCNN inference. Then an
efficient two-level systolic acceleration architecture is given
based on proposed quantization scheme. Experiment results
demonstrate the advantages of proposed design in terms of
accuracy and throughput.

Acknowledgement

This work is supported in part by NSFC under grant 61501116,
Jiangsu Provincial NSF under grant BK20140636, Huawei
HIRP Flagship under grant YB201504, the Fundamental
Research Funds for the Central Universities, the SRTP of
Southeast University, State Key Laboratory of ASIC & Sys-
tem under grant 2016KF007, ICRI for MNC, and the Project
Sponsored by the SRF for the Returned Overseas Chinese
Scholars of MoE.

1103

7. REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Proc. Advances in neural informa-
tion processing systems (NIPS), 2012, pp. 1097–1105.

[2] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770 – 778.

[4] Chuan Zhang and Weihong Xu, “Neural networks:
Efficient implementations and applications,” in Proc.
IEEE International Conference on ASIC (ASICON), Oc-
t. 2017, pp. 1029–1032.

[5] Weihong Xu, Zhizhen Wu, Yeong-Luh Ueng, Xiaohu Y-
ou, and Chuan Zhang, “Improved polar decoder based
on deep learning,” in Proc. IEEE International Work-
shop on Signal Processing Systems (SiPS), Oct. 2017, p.
2017 IEEE International Workshop on Signal Process-
ing Systems (SiPS).

[6] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and
Li Fei-Fei, “Imagenet: A large-scale hierarchical im-
age database,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009, pp. 248
– 255.

[7] Weihong Xu, Xiaohu You, and Chuan Zhang, “Us-
ing Fermat number transform to accelerate convolution-
al neural network,” in Proc. IEEE International Confer-
ence on ASIC (ASICON), Oct. 2017, pp. 1033–1036.

[8] Weihong Xu, Zhongfeng Wang, Xiaohu You, and Chuan
Zhang, “Efficient fast convolution architectures for con-
volutional neural network,” in Proc. IEEE Internation-
al Conference on ASIC (ASICON), Oct. 2017, pp. 904–
907.

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David, “BinaryConnect: Training deep neural networks
with binary weights during propagations,” Proc. Ad-
vances in neural information processing systems (NIP-
S), pp. 1–9, 2015.

[10] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi, “XNOR-Net: ImageNet clas-
sification using binary convolutional neural networks,”
arXiv preprint arXiv:1603.05279, 2016.

[11] Fengfu Li and Bin Liu, “Ternary weight networks,” arX-
iv preprint arXiv:1605.04711, 2016.

[12] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S.
Wong, “LogNet: Energy-efficient neural networks using
logarithmic computation,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017, pp. 5900–5904.

[13] Denis A. Gudovskiy and Luca Rigazio, “ShiftCNN:
Generalized low-precision architecture for inference of
convolutional neural networks,” arXiv preprint arX-
iv:1706.02393, 2017.

[14] D. A. Huffman, “A method for the construction of
minimum-redundancy codes,” Proceedings of the IRE,
vol. 40, no. 9, pp. 1098–1101, 1952.

[15] H. T. Kung, “Why systolic architectures?,” IEEE Com-
puter, vol. 15, no. 1, pp. 37–46, 1982.

[16] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivi-
enne Sze, “Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,”
IEEE Journal of Solid-State Circuits, vol. 52, pp. 127–
138, 2017.

[17] Pytorch, “Torchvision models,” http://pytorch.
org/docs/master/torchvision/models.
html.

[18] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Box-
un Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi
Xu, Sen Song, et al., “Going deeper with embedded
FPGA platform for convolutional neural network,” in
Proc. ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2016, pp. 26–35.

[19] C. Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan,
and Jason Cong, “Caffeine: Towards uniformed repre-
sentation and acceleration for deep convolutional neural
networks,” in Proc. IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2016, pp. 1–
8.

1104

