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ABSTRACT
There has been growing interest in the deployment of deep
learning systems onto resource-constrained platforms for fast
and efficient inference. However, typical models are over-
whelmingly complex, making such integration very challeng-
ing and requiring compression mechanisms such as reduced
precision. We present a layer-wise granular precision analysis
which allows us to efficiently quantize pre-trained deep neu-
ral networks at minimal cost in terms of accuracy degradation.
Our results are consistent with recent findings that perturba-
tions in earlier layers are most destructive and hence needing
more precision than in later layers. Our approach allows for
significant complexity reduction demonstrated by numerical
results on the MNIST and CIFAR-10 datasets. Indeed, for
an equivalent level of accuracy, our fine-grained approach re-
duces the minimum precision in the network up to 8 bits over
a naive uniform assignment. Furthermore, we match the accu-
racy level of a state-of-the-art binary network while requiring
up to∼ 3.5× lower complexity. Similarly, when compared to
a state-of-the-art fixed-point network, the complexity savings
are even higher (up to ∼ 14×) with no loss in accuracy.

Index Terms— deep learning, neural networks, preci-
sion, analysis

1. INTRODUCTION
It is well appreciated that neural networks are very power-
ful predictive models. However, most state-of-the-art neural
networks are overwhelmingly complex. It is common to find
networks requiring around 1 billion multiply-accumulates
(MACs) [1], or having over 100 million parameters [2] and
over 1000 layers [3]. Such high complexity has motivated
researchers to find ways of reducing the resource utilization
of neural networks. Among recent approaches are pruning
[4], sequential reduction [5], and zero skipping [1].

It was shown to be possible to directly train 16-bit fixed-
point networks using stochastic rounding [6], or even fully
binarized networks [7, 8, 9]. Theoretically, undertaking such
a discrete optimization is significantly more challenging than
the usual, full precision, back-propagation based training of
neural networks. Furthermore, the inherent robustness of
neural networks suggests that quantizing a pre-trained model
would provide a much easier, yet reliable, way of reducing
the complexity. This has led to some interesting analytical in-
vestigations on the quantization tolerance of neural networks.

This work was supported in part by Systems On Nanoscale Informa-
tion fabriCs (SONIC), one of the six SRC STARnet Centers, sponsored by
MARCO and DARPA.

In [10], an analytical solution for customized fixed-point
representations based on the signal-to-quantization-noise ra-
tio (SQNR) was presented. However, this solution suffers
from the SQNR not being a meaningful metric in the context
of classification and machine learning. An elegant solution
has been recently provided in [11] where analytical upper
bounds on the accuracy degradation as a function of precision
were derived. In addition, separate precisions were assigned
for activations and weights, and led to the discovery of an
interesting trade-off between the two.

Recently [12], it has been empirically observed that the
earlier layers in a deep neural network (DNN) can accom-
modate less perturbations than later (deeper) layers thereby
implying that more precision is required by the earlier layers.
However, thus far there has been no attempt to exploit this ob-
servation and to systematically minimize per-layer precision
in DNNs.

In this paper, we employ the DNN precision analysis
framework in [11] to provide a theoretical basis and an ana-
lytical method for per-layer precision assignment in DNNs.
The proposed method can be employed by DNN designers
to minimize overall precision without having to resort to ex-
pensive trial-and-error simulation-based approaches that are
prevalent today. We show that per-layer minimum precision
of input to output layers varies from 7 bits-to-2 bits and from
11 bits-to-2 bits for networks processing the MNIST [13]
and CIFAR-10 [14] datasets, respectively. Therefore, per
layer precision assignment leads to much greater savings in
complexity compared to a uniform assignment of layer pre-
cisions. Indeed, for the MNIST and CIFAR-10 datasets, and
for the same level of accuracy, we show up to 4 bits reduc-
tion in minimum precision compared to the coarse-grained
approach of [11] and up to 8 bits reduction compared to a
naive uniform assignment [6, 1]. Moreover, we achieve same
accuracy but ∼ 3.5× less complexity than a state-of-the-art
binary network, BinaryNet [7]. Compared to a state-of-the-
art fixed-point network [6], the complexity savings are even
higher (up to ∼ 14×) in spite of better accuracy.

The rest of this paper is organized as follows. Section
2 presents necessary background. Section 3 introduces our
proposed precision reduction method. Numerical results are
included in Section 4. We conclude our paper in Section 5.

2. BACKGROUND
We first review the theoretical results of [11] relating accu-
racy to precision. The accuracy metric used is the mismatch
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Fig. 1: Per-layer precision assignments for a feedforward neural
network architecture. Each layer performs either a matrix vector
multiplication, or a set of 2D convolutions, followed by a non-linear
activation function. The precision assignments for layer l are BA,l

and BW,l for activations and weights, respectively.

probability pm = P
(
Ŷfx 6= Ŷfl

)
, which is the probability

that the predicted label Ŷfx of a fixed-point neural network
is different from Ŷfl, that of its floating point counterpart. It
was shown [11] that:

pm ≤ ∆2
AEA + ∆2

WEW (1)

where ∆A = 2−(BA−1) and ∆W = 2−(BW−1) are the activa-
tion and weight quantization step-sizes, respectively, and

EA = E


M∑
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i 6=Ŷfl

∑
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∣∣∣∣∂(Zi−ZŶfl
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∣∣∣∣2
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|2
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∣∣∣∣∂(Zi−ZŶfl
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∣∣∣∣2
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
are the activation and weight quantization noise gains, respec-
tively. Note the dependence on the number of classes (M ), the
indexing sets of activations (A) and weights (W), and the soft
outputs ({Zi}Mi=1).

Interestingly, the noise gains can be obtained as part of
a standard back-propagation procedure and need to be com-
puted only once making (1) very practical. Finally, in order
to avoid over quantization of either activations or weights, the

difference between the two precisions (BA and BW ) is cho-
sen to balance the sum in (1), as follows:

BA −BW = round

(
log2

√
EA

EW

)
(2)

where round() denotes the rounding operation.
Both (1) and (2) can be combined in order to efficiently

determine the coarse-grained minimum precision require-
ments of a neural network. Indeed, (2) can first be used to
set the difference between BA and BW and reduce the search
from a 2 dimensional grid to one. Then, (1) can be used
to obtain an initial estimate of the precision requirements
satisfying a certain maximal condition on pm. Finally, the
search can be fine-tuned beyond the original estimate of (1)
via simulations.
3. PROPOSED PRECISION REDUCTION METHOD

3.1. Fine-grained precision analysis
For a given neural network with L layers, let {Al}Ll=1

{Wl}Ll=1 be the layer-wise partitions of A and W , respec-
tively. Consequently, as shown in Fig. 1, if the per-layer
precisions are {BA,l}Ll=1 and {BW,l}Ll=1 for activations and
weights, respectively, then (1) can be re-written as:

pm ≤
L∑

l=1

(
∆2

A,lEA,l + ∆2
W,lEW,l

)
(3)

where ∆A,l = 2−(BA,l−1) and ∆W,l = 2−(BW,l−1) are the
activation and weight quantization step-sizes at layer l, re-
spectively, and

EA,l = E


M∑
i=1

i6=Ŷfl

∑
h∈Al

∣∣∣∣∂(Zi−ZŶfl
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∣∣∣∣2
24|Zi − ZŶfl

|2


and
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
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
are the activation and weight quantization noise gains at layer
l, respectively.

Observe that (3) is a sum of 2L terms where the quan-
tization noise gains are computed only once after training.
The design parameters are the 2L precision assignments,
{BA,l}Ll=1 and {BW,l}Ll=1. Once again, a sum of independent
terms is to be balanced. To do so, the minimum quantization
noise gain is first computed:

Emin = min
(
{EA,l}Ll=1 , {EW,l}Ll=1

)
. (4)

Then, a reference minimum precision Bmin is chosen, and for
each layer l, similar to (2), the precision is set as follows:

BA,l = round

(
log2

(√
EA,l

Emin

))
+ Bmin (5)
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and

BW,l = round

(
log2

(√
EW,l

Emin

))
+ Bmin (6)

Note that at least one of the 2L precision assignments will
equal Bmin.

Once again, (3)-(6) can be used to efficiently find the fine-
grained minimum precision requirements of a network. Here,
(4), (5), and (6) are used to reduce the search space from a 2L
dimensional grid to just a one dimensional axis. Afterwards,
(3) is used to provide an initial estimate of precision require-
ments. Note that the search space reduction is massive. For
instance, for a 5 layer network, if we are considering preci-
sions up to 16 bits, the search space is reduced from 1610 to
only 16 design points.

3.2. Complexity in Fixed-point
In order to quantify the benefits of the proposed precision re-
duction method, we shall consider two measures of complex-
ity [11]: computational and representational costs.

The computational cost is the total number of full adders
needed per decision. Note that each layer implements an en-
semble of dot products in order to realize either a matrix vec-
tor multiplication or a set of 2D convolutions. Hence, the
computational cost (measured in 1 bit full adders or FAs) of a
network is [11]:

L∑
l=1

[
Nl (DlBA,lBW,l+

(Dl − 1)(BA,l + BW,l + dlog2(Dl)e − 1))

]
where Nl and Dl are the number and dimensionality of dot
products computed at layer l, respectively.

The representational cost is the total number of bits
needed to represent both weights and activations, and is
given by:

L∑
l=1

(|Al|BA,l + |Wl|BW,l)

4. NUMERICAL RESULTS
4.1. Set-up
Numerical experiments on two datasets are considered:
the MNIST dataset for character recognition [13], and the
CIFAR-10 dataset for object recognition [14]. For each, a
neural network is first pre-trained as follows:
• MNIST: A multi-layer perceptron with architecture

784 − 512 − 512 − 512 − 10. The network is pre-
trained using Vanilla SGD [15] and has a baseline test
error of 1.10% in floating-point.

• CIFAR-10: A convolutional neural network with archi-
tecture 32C3−32C3−MP2−64C3−64C3−MP2−
128C3 − 128C3 − 256FC − 256FC − 10. The net-
work is pre-trained is trained using Vanilla Adam [16]
and has a baseline test error of 11.87% in floating-point.

(a)

(b)
Fig. 2: Plots showing quantization noise gains and per-layer pre-
cision assignments for (a) MNIST and (b) CIFAR-10, to satisfy
pm ≤ 1%. The minimum precision to satisfy pm ≤ 1% with uni-
form precision assignment is also shown.

Note that the architectures described above are inspired from
those used by BinaryNet [7] and are actually obtained by re-
ducing the height of each layer by a factor of 4.

Each network is then quantized to fixed-point using three
precision assignment methods:
• the proposed fine-grained precision assignment.
• a coarse-grained precision assignment [11].
• a uniform or identical precision assignment for all acti-

vations and weights.
The obtained results are compared to those reported by two
state-of-the-art works on reduced precision neural networks:
• Stochastic quantization (SQ) [6] - trained fixed-point

networks.
• BinaryNet (BN) [7] - trained binarized networks.

4.2. Results
Figure 2 shows the benefits of the proposed approach (3)-(6)
compared to a naive uniform precision assignment. Indeed, to
satisfy a mismatch probability of pm ≤ 1%, most precisions
are less than the required uniform precision. Furthermore, ob-
serve that the precision assignment matches the quantization
noise gain profile on a logarithmic scale. This is due to the
use of (4), (5), and (6). In addition, a general trend of de-
creasing precision requirements with layer depth is noticed.
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Fig. 3: Test error vs. minimum precision (Bmin), computational and representational costs, for: (a) MNIST and (b) CIFAR-10 networks. A
comparison with SQ [6] and BN [7] is also included.

This is in accordance with recent findings demonstrating that
perturbations at the early layers of neural networks are often
the most destructive [12]. Here, the proposed method is natu-
rally countering this effect by assigning more precision to the
lower levels. Similarly, it is seen that the precision assign-
ments of weights are typically more than those of activations,
confirming the findings of [11].

Figures 3 shows that the coarse-grained approach [11]
achieves a good initial improvement over the naive uniform
assignment, and is able to reduce the minimum precision by
up to 4 bits before the accuracy starts to degrade. However,
the proposed fine-grained method is noticeably superior and
able to reduce the minimum precision to just 2 bits without
any notable accuracy degradation for both networks. This cor-
responds to 4 bits less than the minimum precision obtained
via the coarse-grained method for the CIFAR-10 network.

As far as complexity is concerned, the results obtained
outperform those of SQ. For instance, on the CIFAR-10
dataset, the test error obtained via the fine-grained precision
assignment is ∼ 13% less than that reported by SQ in spite
of requiring ∼ 4× fewer computational cost. Moreover, the
complexity savings of BN (binarized) are surpassed. Indeed,

even though the reported levels of accuracy are very close
those obtained via the proposed method, the latter achieves
up to ∼ 3× and ∼ 3.5× less computational cost for the
MNIST and CIFAR-10 networks, respectively, over the fully
binarized BN. Similar trends also hold for the representa-
tional costs. These results reflect the importance of depth vs.
width vs. precision considerations when exploring reduced
complexity neural networks.

5. CONCLUSION
We have presented an analytical approach to fine-grained pre-
cision assignment in deep neural networks (DNNs). The ben-
efits of the proposed approach in terms of minimum precision
and complexity reduction has been shown. A performance
comparison with state-of-the-art binary and fixed-point neu-
ral networks was illustrated and highlighted considerable sav-
ings. The presented work allows DNN designers to determine
minimum precision requirements in DNNs and estimate their
complexities without needing to run lengthy simulations. The
proposed method can be employed to efficiently explore other
dimensions in the design of low-complexity DNNs such as the
trade-off between precision vs. depth vs. width, and between
precision and pruning.
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