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ABSTRACT 

A fast-convergence singular value decomposition (SVD) algorithm 
is developed for tracking time-varying channels in massive MIMO 
precoding/beamforming systems. Since only strong eigen-modes are 
selected for data transmission in these systems, our SVD algorithm 
exploits the properties of partial decomposition and temporal 
correlation. Besides, the proposed self-adjusting inverse power 
method can achieve fast convergence by modifying the shift 
according to the intermediate result during each iteration. 
Furthermore, the singular vectors and values of the desired eigen-
modes can be computed simultaneously. Thus, parallel processing 
is possible to facilitate high-throughput implementation. Compared 
to the self-power method with super linear convergence, the self-
adjusting inverse power method has better convergence and lower 
complexity. Good channel tracking capability is also demonstrated. 
 

Index Terms — Massive MIMO, SVD, channel tracking, 
inverse power method. 

1. INTRODUCTION 

Singular value decomposition plays an important role in multiple-
input multiple-output (MIMO) wireless communication systems. It 
can generate precoding/beamforming and decoding matrix at the 
transmitter and receiver side to transform the spatial channel into 
parallel subchannels [1]. User data then can be transmitted through 
these spatial subchannels with stronger channel gains. In other 
words, singular value decomposition helps to realize signal 
concentration and interference removal. Thus, its applications in 
MIMO systems are widely seen. 

For an  ܰ × ܰ  matrix, the complexity of SVD is usually 
described by ࣩ(ܰଷ). In [2], the Jacobi algorithm is adopted, which 
uses a series of Jacobi rotations to nullify the off-diagonal terms and 
to generate singular values as well as singular vectors for the channel 
matrix of size 2 × 2 ~ 8 × 8 . In [3][4], two-step algorithms 
containing bidiagonalization and iterative diagonalization are 
employed for 4 × 4  or 8 × 8  MIMO systems. The self-power 
method is employed in [5] for 4 × 4  channel matrixes. As the 
number of antennas at the base station becomes large, known as the 
massive MIMO technique for the upcoming 5G systems, the 
computation complexity grows rapidly and may be unaffordable for 
real-time implementation if the conventional schemes are adopted.  
Consequently, more properties of the SVD for massive MIMO 
precoding applications should be exploited. Iterative approaches are 
often involved for SVD. Both [5] and [6] emphasize the importance 
of accelerating convergence to save the computation. In [6], channel 
temporal correlation is utilized and the recursive algorithm is 
derived to reduce the complexity. In addition, for the massive 
MIMO systems, only parts of the singular vectors corresponding to 
the strong eigen-modes are desired. Thus, solving all the singular 

vectors are not necessary [6][7]. In light of the above, partial 
decomposition, fast convergence, and temporal correlation are 
essential properties that must be taken into consideration when we 
develop the SVD algorithm for massive MIMO systems. 

In this paper, we present the SVD algorithm for tackling time-
varying channel matrix in massive MIMO systems. The QuaDriGa 
and 3GPP three-dimensional channel model is adopted so as to 
examine channel properties in massive MIMO systems [8][9]. A 
hybrid power method is then adopted, which combines self-power 
method (SPM) [5] and self-adjusting inverse power method (SA-
IPM). The SPM is employed in the initialization phase to compute 
only the desired singular values and the corresponding singular 
vectors, which can be regarded as the first acquisition. The proposed 
SA-IPM then follows in the tracking phase for subsequent tuning. 
Although the channel response and its singular values are time-
varying, we can take advantage of their temporal correlation. 
Consequently, the previous singular-value information is reused as 
the shift in the SA-IPM to obtain the latest SVD result and to shorten 
the convergence time. Furthermore, the SA-IPM is advantageous in 
the following two aspects. On one hand, the shift is adjusted during 
each iteration so as to upgrade convergence. On the other hand, the 
singular vectors can be computed in parallel. Thus, high-throughput 
real-time processing becomes feasible. The performance simulation 
results demonstrate its excellent tracking capability. The complexity 
is also evaluated to show the saving attained by the proposed method. 

In the following, the system model and channel model are first 
illustrated in Sec. 2. The proposed SVD algorithm for time-varying 
channel matrix is given in Sec. 3. The complexity analysis and 
performance simulation are shown in Sec. 4. Finally, Sec. 5 gives a 
brief conclusion. 

2. SYSTEM MODEL AND CHANNEL MODEL 

In massive MIMO precoding systems with ܰ receive antennas 
and ܯ  transmit antennas, the received signal ܡ ∈ ℂே×ଵ  can be 
expressed as ܡ = ܠ۶۴ +  (1)                                ܖ

where ܠ ∈ ℂௌ×ଵ is the transmitted signal vector with ܵ streams; ۶ ∈ℂே×ெ is the channel response; ܖ is the noise vector. By SVD, ۶ ഥ܃ ഥୌ, where܄ഥ઱ഥ܃= ∈ ℂே×ே and ܄ഥ ∈ ℂெ×ெ are the left singular matrix 
and the right singular matrix, respectively; ઱ഥ ∈ ℝே×ெ  is a real 
diagonal matrix with singular values on its diagonal. Usually ܰ in the downlink. Given precoding matrix ۴ ܯ≫ = ܄ ∈ ℂெ×ௌ , which 
consists of ܵ  right singular vectors in ܄ഥ  corresponding to the ܵ 
strongest singular values. With decoding matrix ܃ୌ ∈ ℂௌ×ே , the 
stronger channel eigen-modes then are used to transmit ܵ streams, 
and thus we have ܢ = ܡୌ܃ = ܠ܄ୌ۶܃ + ܖୌ܃ = 	઱ܠ +  (2)             .ܖୌ܃
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Fig. 1 Time-varying angle of arrival and singular values along a 
circular trajectory. 

    To model the three-dimensional (3D) spatial channel 
characteristics for massive MIMO systems, the (݊௥, ݊௧) th 
coefficient of the channel matrix takes the form of [9] ۶௠(݊௥, ݊௧) = ∑ ට௉೗௎ ∑ exp	(݆݇ܚො௥௫,௟,௨் [m]̅܌௥௫,௡ೝ)௎௨ୀଵ௅௟ୀଵ 										             exp	(݆݇ܚො௧௫,௟,௨் [m]̅܌௧௫,௡೟)exp	(݆݇ܚො௥௫,௟,௨் ത݉ܞ[݉] ௦ܶ)       (3) 

where ௟ܲ  denotes the path power of cluster l; ݇ = ௦ܶ ;ߣ/ߨ2  is the 
sampling period. ܚො௧௫,௟,௨் [m] (ܚො௥௫,௟,௨் [m]) is the spherical unit vector 
with azimuth departure (arrival) angle ߶௟,௨௧௫ [݉]  ( ߶௟.௨௥௫[݉])  and 
elevation departure (arrival) angle ߠ௟,௨௧௫ [݉] [݉]௟,௨௥௫ߠ)  ) of the lth 
cluster and the ݑth subpath at time index ݉, 

ො௧௫,௟,௨[m]ܚ = ൦݊݅ݏ൫ߠ௟,௨௧௫ [݉]൯cos	(߶௟,௨௧௫ ௟,௨௧௫ߠ൫݊݅ݏ([݉] [݉]൯sin	(߶௟,௨௧௫ ௟,௨௧௫ߠ൫ݏ݋ܿ([݉] [݉]൯ ൪.                  (4) 

According to the K factor, ଵܲ = ܭ ∑ ௟ܲ௅௟ୀଶ  and ∑ ௟ܲ௅௟ୀଵ = 1 . The 
uniform planar array (UPA) is considered because smaller antenna 
array dimensions are allowed for massive MIMO systems and it 
supports beamforming in elevation [10]. The antenna element inside 
the array is represented by the location vector ̅܌௧௫,௡೟  at the (௥௫,௡ೝ̅܌) 
transmitter (receiver) side. The movement of the mobile station is 
described by the mobility vector ܞത  with travel azimuth angle, 
elevation angle and speed |ܞത|. 
   To describe time-evolving sequence of channel coefficients ۶௠ 
along the user trajectory, the birth and death of scattering clusters 
are introduced in [8]. The trajectory is partitioned into several 
segments. For each segment, the parameters remain unchanged. 
Smooth transition in the overlapping region between two adjacent 
segments is achieved by the ramp with a squared sine function, ܴ൫݉௢௩௘௥௟௔௣൯ = sinଶ ቀగଶ ௠೚ೡ೐ೝ೗ೌ೛ை ቁ,                      (5) 

where ܱ is the index duration for the overlapping region and −ܱ ≤݉௢௩௘௥௟௔௣ ≤ ܱ. Thus, the power of old clusters ramps down and the 
power of new clusters ramp up. Given that a user moves along a 
circular trajectory with a radius of 100m and the antenna spacing in 
the antenna array is half-wavelength, Fig. 1 depicts the time-varying 
channel coefficients and singular values of 9×64 channel matrix ۶௠ 
with 12 clusters each having 10 subpaths. Assume that the mobility 
is 3Km/hr and the maximum Doppler frequency is 83.3Hz. Each 
segment is about 22m and the overlapping region has a length of 
11m. The drifting effect is incorporated to update the snapshot of 
azimuth and elevation arrival angle according to position of the 
mobile station along the trajectory inside each segment [8]. The 
azimuth and elevation departure angles keep fixed [8][11]. 

3. PROPOSED SVD TRACKING ALGORITHM 

To develop SVD algorithm for tracking time-varying channel in 
massive MIMO systems, the following properties must be exploited. 

 Only the desired singular vectors corresponding to strong 
singular values are computed for complexity reduction. 

 Fast convergence is necessary to facilitate channel tracking 
and to save computation time. 

 Correlation of channel response must be utilized in order to 
accelerate convergence or to reduce complexity. 

We then use the hybrid power method for SVD, provided in 
Algorithm 1, to track channel variation. Initially, the channel usable 
eigen-modes are unknown, and thus search for strong singular 
values is necessary. The self-power method (SPM) which has a 
super linear convergence rate [5] is utilized in the first acquisition 
phase. The eigenvalues together with eigenvectors of ۯ௠, namely 
singular values and associated left singular vectors of ۶௠ , are 
computed sequentially from the one with the largest magnitude, as 
described in Algorithm 2. Assume that ܵ  singular vectors are 
required, which can be determined either by the number of streams 
to be transmitted or by the selected eigen-modes according to the 
magnitude of singular values. For each vector, ܫଵ  iterations are 
executed. When the ݎth singular vector is obtained, the deflation 
operation is performed as in Step 7 of Algorithm 2 to remove the 
contribution of that vector in the matrix to be decomposed. 

In the tracking phase, the SA-IPM is adopted to accelerate the 
convergence. The QR decomposition (QRD) is adopted to solve the 
inverse operation as described in Algorithm 3. The QRD can handle 
the rank-deficient matrix. Hence, when the shift is equal to the 
eigenvalue, the eigenvector can be obtained immediately from the 
vector spanning the null space as given in Step 4, where ϵ is a tiny 
value. Moreover, based on the concept of Rayleigh quotient iteration 
[12], the shift is adjusted according to the information during each 
iteration so as to approach the eigenvalues very quickly. The 
explanation is given in the following.  

From step 2 and step 8 in Algorithm 3 for ݅ = ݅ଶ − 1, the SA-IPM 
calculates ܢ௥(௜ାଵ) = ൬ۯ − ቀߚ௥(௜) ∙ ۷ቁ൰ିଵ ഥ௥(௜)ܙ = ۰(௜)ܙഥ௥(௜),          (6) 

Algorithm 1: Hybrid Power Method 
Input: ۶௠
Output: ܃௠, ઱௠, ܄௠ 
௠ۯ  :1 = ۶௠ ∙ ۶௠ு  
2:  if (Initialization)    // Initialization phase 
[௠܄]							 :3 = SPM(ۯ௠,  // Self-Power method		ଵ)ܫ
4:  else   // Tracking phase 
ݎ	ܚܗ܎							  :5 =    ܵ	݋ݐ	1
௥(଴)ߚ						    					:6 = (઱௠ି୼(ݎ, ഥ௥(଴)ܙ  ,૛((ݎ = :)௠ି୼܄ ,  (ݎ
7:       							ቂܙഥ௥(ூమ), ௥(ூమ)ቃߚ = SA-IPMቆ൬ۯ௠ − ቀߚ௥(଴) ∙ ۷ቁ൰ ,  ഥ௥(଴)ቇܙ

 ܌ܖ܍									 :8
௠܄         :9 = ഥଵ(ூమ)ܙൣ ഥଶ(ூమ)ܙ …  ഥௌ(ூమ)൧ܙ
10: endif 
௠܂ :11 = ۶௠ு܄௠ 
ݎ	ܚܗ܎ :12 =  ܵ	݋ݐ	1
13:       ઱௠(ݎ, (ݎ = :)௠܂‖ ,  ‖(ݎ
:)௠܃ :14 , (ݎ = :)௠܂ , ,ݎ)઱௠/(ݎ  (ݎ
15:  ܌ܖ܍
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for the ݎth vector. Without loss of generality, subscript ݉ is dropped 
here. By QR decomposition,  ൫۰(௜)൯ିଵ = ൬ۯ − ቀߚ௥(௜) ∙ ۷ቁ൰ =  (7)            ,(௜ାଵ)܀(௜ାଵ)ۿ

where ۿ(௜ାଵ) and ܀(௜ାଵ) are unitary and upper triangular matrixes. 

Assume that ۯ has at least ܰ linearly independent eigenvectors ܙ௥ 

and associated eigenvalues ߣ௥ = ௥(௜)ߚ + δ௥(௜)  for 1 ≤ ݎ ≤ ܰ. Thus, 

matrix ۰(௜)  has an eigenpair 
ଵஔೝ(೔) ≫ 1  and ܙ௥ . If ߚ௥(௜)  equals the 

eigenvalue, namely δ௥(௜) = 0 , then inverse of ൬ۯ − ቀߚ௥(௜) ∙ ۷ቁ൰  is 

infeasible. However, due to the rank deficiency, 

,ܰ)(௜ାଵ)܀  ܰ) = 0                                    (8) 

and  

:)(௜ାଵ)ۿ          , ܰ)ு ൬ۯ − ቀߚ௥(௜) ∙ ۷ቁ൰ு         = :)(௜ାଵ)ۿ , ܰ)ு ൬ۯ − ቀߚ௥(௜) ∙ ۷ቁ൰ = ૙ଵ×ே,            (9) 

where the property that ۯ  is a Hermitian symmetric matrix is 
utilized. Thus, it is clear that ൬ۯ − ቀߚ௥(௜) ∙ ۷ቁ൰ۿ(௜ାଵ)(: , ܰ) = ૙ே×૚.                      (10) 

Eq. (10) means that ۿ(௜ାଵ)(: , ܰ)  lies in the null space of ൬ۯ − ቀߚ௥(௜) ∙ ۷ቁ൰. Hence, it is the desired eigenvector.  

On the other hand, if δ௥(௜) ≠ 0, let ܙഥ௥(௜) = ∑ ܿ௞(௜)ܙ௞ே௞ୀଵ .                                 (11) 

Based on the first acquisition result from the SPM, ݈ܽ݁ݎ(ܿ௥(௜))	is 

close to 1 and ቚܿ௞(௜)ቚ approaches 0 for ݇ ≠  ,Thus .ݎ

௥(௜ାଵ)ܢ    = ۰(௜)ܙഥ௥(௜) = ଵஔೝ(೔) ܿ௥(௜)ܙ௥ + ∑ ܿ௞(௜) ൬ ଵఒೖିఉೝ(೔)൰ ௞.ே௞ୀଵ,௞ஷ௥ܙ    (12) 

Given ቚߣ௥ − ௥(௜)ቚߚ = ቚδ௥(௜)ቚ ≪ ቚߣ௞ − ݇ ௥(௜)ቚ forߚ ≠  ,ݎ

 ቛܢ௥(௜ାଵ)ቛ ≈ ฬ௖ೝ(೔)ஔೝ(೔)ฬ ≈ ฬ ଵஔೝ(೔)ฬ.                                (13) 

From Eq. (12), we can adjust the shift, ߚ௥(௜), to approach ߣ௥ so as to 

accelerate the convergence if the sign of δ௥(௜) is known. Given that  ܙഥ௥(௜)ுܙ௞ = ܿ௞(௜)ு and ݈ܽ݁ݎ(ܿ௥(௜)) close to 1, we can derive ܙഥ௥(௜)ுܢ௥(௜ାଵ) = ଵஔೝ(೔) ቚܿ௥(௜)ቚଶ + ∑ ቚܿ௞(௜)ቚଶ ൬ ଵఒೖିఉೝ(೔)൰ .ே௞ୀଵ,௞ஷ௥          (14) 

Thus,  

݊݃݅ݏ          ቀ݈ܽ݁ݎ(ܙഥ௥(௜)ுܢ௥(௜ାଵ))ቁ ≅ ݊݃݅ݏ ൬ ଵஔೝ(೔)൰                  (15) 

because ቚܿ௞(௜)ቚଶis small for ݇ ≠  From Eqs. (13) and (15), the shift .ݎ

can be adjusted in the following way. If ݊݃݅ݏ ቀ݈ܽ݁ݎ(ܙഥ௥(௜)ுܢ௥(௜ାଵ))ቁ > 0 ௥(௜ାଵ)ߚ , = ௥(௜)ߚ	 + 1/ฮܢത(௜ାଵ)ฮ 

Otherwise, the adjustment can be made in the opposite direction and ߚ௥(௜ାଵ) = ௥(௜)ߚ	 − 1/ฮܢത(௜ାଵ)ฮ to approach the eigenvalue. Note that 
the Rayleigh quotient iteration [12] uses the adjustment which can 
be given as follows  

ഥ௥(௜)ுܙ  ൬ۯ − ቀߚ௥(௜) ∙ ۷ቁ൰ିଵ ഥ௥(௜)ܙ =  ௥(௜ାଵ)            (16)ܢഥ௥(௜)ுܙ

and its expression is shown in (14). 

 
Fig. 2 Performance and convergence rate of the SPM in the first 

phase for different channel models. 

3. PERFORMANCE SIMULATION AND 
COMPLEXITY ANALYSIS 

The performance of the two-phase hybrid power method is given 
in Fig. 2 and Fig. 3. The antenna configuration and the number of 
spatial streams are denoted by (ܰ,ܯ, ܵ). The K factor of the 3D 
channel model is 3dB in the simulation. The mean square error  

(MSE) of desired singular values, E൛|ඥߣ௥ − ઱௠(ݎ, ଶൟ|(ݎ , is 
evaluated. As depicted in Fig. 2, the self-power method shows 
different convergence rates for independent and identically-

Algorithm 2: SPM [5]  
Function SPM(ۯ,  (ଵܫ
Output: ܄ 
૚(૙)ۯ  :1 =   ,ۯ
ݎ	ܚܗ܎  :2 =  ܵ	݋ݐ	1
ଵ݅	ܚܗ܎         :3 = 1,2,… ,  ଵܫ
(௜భ࢘)ۯ                :4 = ݇௥(௜ିଵ)ۯ(࢘௜భି૚)ۯ(࢘௜భି૚) 
5:         end 

௥ܞ         :6 = :)(ூభ࢘)ۯ , ૚)/ቛۯ(࢘ூభ)(: , ૚)ቛ 

௥ାଵ(૙)ۯ         :7 = (۷ −  ௥(૙)ۯ(ு࢘ܞ௥ܞ
8:   end 
܄   :9 = ଵܞ] ଶܞ …  [ௌܞ
Algorithm 3: SA-IPM 

Function SA-IPM ൬ቀۯ − ൫ߚ(଴) ∙ ۷൯ቁ ,  ഥ(଴)൰ܙ

Output: ܙഥ(ூమ), ߚ(ூమ) 
1: for ݅ଶ = 1,2,… ,  ଶܫ

,(௜మ)ۿൣ        :2 ൧(௜మ)܀ = qr ቀۯ − ൫ߚ(௜మିଵ) ∙ ۷൯ቁ 

3:        if ൫ห܀(௜మ)(ܰ, ܰ)ห < ϵ൯ 
ഥ(ூమ)ܙ										      :4 = :)(௜మ)ۿ , ܰ) 
(ூమ)ߚ               :5 =  (௜మିଵ)ߚ
6:               break; 
7:        else 

(௜మ)ܢ                :8 = ൫܀(௜మ)൯ି૚ۿ(௜మ)ୌܙഥ(௜మିଵ) 
9:                if ቀ࢙࢔ࢍ࢏൬࢘࢒ࢇࢋ ቀܙഥ௥(௜)ுܢ௥(௜ାଵ)ቁ൰ > ૙ቁ   

(ூమ)ߚ                         :10 = (௜మିଵ)ߚ	 + 1/ฮܢ(௜మ)ฮ 
11:              else 
(ூమ)ߚ                         :12 = (௜మିଵ)ߚ	 − 1/ฮܢ(௜మ)ฮ 
13:              endif 
ഥ(ூమ)ܙ              :14 =  ฮ(௜మ)ܢฮ/(௜మ)ܢ
15:      endif 
16: end 
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distributed (IID) channel matrixes and the ones generated from UPA. 
It is clear that the spatial correlation makes the distribution of 
singular values different. In Fig. 3, the fast convergence rate of the 
SA-IPM is illustrated. Because the shift is adapted in each iteration, 
only few iterations are required. Compared to linear convergence of 
conventional inverse power method and super linear convergence of 
SPM, the proposed method has excellent convergence.  

 
Fig. 3 Comparison of conventional inverse power method and the 
proposed SA-IPM.  

 
Fig. 4 Performance of SA-IPM in the tracking phase. 

Once the desired singular values and singular vectors are acquired, 
the sequent tracking can simply rely on the SA-IPM. It can tolerate 
the time-variant singular value to a certain degree. Fig. 4 shows the 
MSE of the tracking result when ∆ in step 6 of Algorithm 1 is set to 
various values given the maximum Doppler frequency 83.3Hz. The 
number of iterations is fixed and the sampling period ( ௦ܶ) is 5μs. 
The antenna spacing is a half wavelength. Consequently, the SA-
IPM can take advantage of channel temporal correlation and shows 
good tracking capability. 

The complexity of the hybrid power method is evaluated and given 
in Table 1. From the table, we can see that the multiplication 
complexity overwhelms the remaining arithmetic computations. It 
is clear that a fast convergence rate brings not only the good tracking 
capability but also the linear complexity reduction. Furthermore, the 
complexity is sensitive to the matrix dimension of ۯ௠ , but 
insensitive to the number of transmit antennas because parameter ܯ 
exists in the non-iterative operations. Actually, we should always 
obtain the singular vectors of a small dimension at first if the channel 
matrix is not square. The SPM needs to deflate the matrix when a 
new singular vector is required. The deflation results in sequential 

computation for desired vectors and also computation-intensive. 
However, the proposed SA-IPM can adopt parallel processing 
because no dependency exists between ݎ and 1+ݎ in step 6 and 7 of 
Algorithm 1. This property is advantageous to the implementation 
either by GPU or dedicated hardware. Fig. 5 depicts the number of 
multiplications versus difference ܰ and ܯ values. The number of 
streams, ܵ, is set to 3ܰ/4. The numbers of iterations ܫଵ and ܫଶ are 
selected to be 7 and 3, respectively. Compared to using the SPM 
with super linear convergence [5], switching to the SA-IPM for 
tracking channel variation can achieve reduced complexity as well 
as excellent tracking performance. 

Table I: Complexity evaluation 

 Add. Mul. Div. Sqrt. 
Non-iterative Operation (Algorithm 1) 

Step 1 ܰଶ(4ܯ − 2) 4ܰଶܯ   
Step 11 (4ܰ − ܵܯ(2    ܵܰܯ4
Step 13 (2ܯ − 1)ܵ ܵ  ܵܯ2
Step 14   2ܵܯ  

Initialization Phase: Self-Power Method (Algorithm 2) 
Step 4 ܰଶ(4ܰ − ଵܫܵ(2 4ܰଷܵܫଵ   
Step 6 (2ܰ − 1)ܵ 2ܰܵ 2ܰܵ ܵ
Step 7 (4ܰଷ − 2ܰଶ+ ܰ)ܵ 4ܰଶ(ܰ + 1)ܵ   

Tracking Phase: Self-Adjusting Inverse Power Method 
Step 2 (4ܰଷ + ܰଶ)ܵܫଶ (4ܰଷ + 2ܰଶ)ܵܫଶ 2ܰଶܵܫଶ ܰܵܫଶ 
Step 8 (6ܰଶ − ଶܫܵ(4ܰ (6ܰଶ − ଶܫଶ 2ܰܵܫܵ(2ܰ  
Step 9 (2ܰ −    ଶܫଶ 2ܰܵܫܵ(1
Step 

 10/12 
 ଶܫܵ ଶܫܵ ଶܫଶ 2ܰܵܫ2ܰܵ

Step 14  2ܰܵܫଶ   

 
Fig. 5 Complexity comparison. 

 
5. CONCLUSION 

A singular value decomposition method is developed for channel 
tracking in the massive MIMO systems. The SA-IPM can adjust the 
shift during each iteration from the information contained in the 
resolved eigenvector. Therefore, excellent convergence is obtained. 
With the features of fast convergence and parallel processing, the 
proposed algorithm offers a feasible solution for high-throughput 
and real-time processing. In addition, compared to the SPM with 
super linear convergence, it also outperforms in complexity. 
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