
ABSTRACT

Automated tracking of cells in time-lapse live-imaging
datasets of developing multicellular tissues is required for
high throughput spatio-temporal quantitative measurements
of a range of cell behaviors. The tracking of shoot apical
meristems (SAM) cells in large-scale microscopy image
sequences is challenging, because plant cells are densely
packed within a specific honeycomb structure and share very
similar physical features. In this paper, we propose a 3D local
graph matching model to track the plant SAM cells, by
exploiting the cells’ tight spatial and temporal contextual
information. The proposed 3D local graph matching model is
further combined with a multi-seed based majority voting
scheme to rectify possible matching errors in the cell
correspondence growing process. Compared with the existing
2D local graph matching model, the experimental results
show that the proposed method can greatly improve the
tracking accuracy for plant cells.

Index Terms— Cell tracking, honeycomb structure, 3D
local graph matching, multi-seed

1. INTRODUCTION

A local spatiotemporal coordination of cell growth and cell
division plays a critical role in morphogenesis of both the
plant and the animal tissues. The subject of this study, the
shoot apical meristems, is the most important part of the plant
body because it supplies cells for all the above ground plant
parts such as leaves, branches and stem. For high-throughput
analysis of plant cell image data acquired by confocal laser
scanning microscopy at different time instances and different
spatial slices (as shown in Fig. 1.), the development of fully
automated image analysis pipelines is becoming a necessity.

There has been some work on automated tracking of
animal cells and other common objects in time-lapse images
[1-3]. However, those methods are difficult to track the plant
cells within a special honeycomb structure in microscopic
image stacks, where the plant cells are in close contact with
each other and share very similar physical features.

In the earlier studies, a 2D local graph matching method
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Fig. 1. (a) Plant meristem; (b) Confocal laser scanning microscope;
(c) Time-lapse microscopic plant cell image stacks.

was proposed in [4-6] to track plant SAM cells. In such
framework, every cell is represented by a vertex in the graph
and the neighboring vertices are connected by an edge. The
local graph structure automatically includes the relative
position information of the cells, such as the distance between
two neighboring cells and edge orientation. It successfully
exploits the cells neighborhood structure (geometry structure)
and spatiotemporal context to match the plant cells, and the
experimental results have confirmed the effectiveness of the
local graph matching approach.

However, the spatial contextual information across
different image slices along the z-direction is ignored in the
existing 2D local graph matching model [7-9]. In this paper,
we extend the 2D local graph matching model to build a 3D
plant cell matching framework using a 3D local graph
matching model, by exploiting the cells’ 3D neighborhood
structure and spatiotemporal context. Compared to the 2D
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Fig. 2. The diagram of the proposed 3D local graph matching model with multiple seeds.

local graph matching model, the 3D local graph matching
model is able to track the “3D plant cells”.

Moreover, the existing 2D local graph matching model
matches the plant cells in a sequential way, by growing the
cell correspondence from the most similar cell pair (“Seed
Pair”), it tends to accumulate matching errors. For example,
one certain matching error caused by improper segmentation
in noisy region will result in a series of incorrect matches
during the cell correspondence growing process. In order to
correct such possible wrong matches, we propose a
multi-seed local graph matching framework, in which the
final matching results are the voting output of the matching
results produced by multiple seeds. Therefore, possible
matching errors caused by one single seed can be rectified by
majority voting of the matching results produced by other
seeds. The diagram of the proposed multi-seed 3D local graph
matching model is shown in Fig. 2.

2. DETAILED METHODOLOGY

2.1. 3D Local Graph

The plant cell boundaries are segmented by the watershed

transformation method [10]. As described in the 2D local
graph model [5, 10], for the thk slice ,k tS within an image
stack at time point t , plant cells are related to one another via
a 2D neighboring system, as shown in Fig. 3 (a). Let us define

iN as the neighboring cell set of a central cell, its neighbor
set is 1 2 8{ , ,..., }i j j jN . Similarly, the neighbor set of a given
cell u in slice , 1k tS  is 1 2 8{ , ,..., }u v v vN . The number of
neighbors depends on the cells’ physical neighborhood.

Based on the 2D local graph model above, we build the
3D local graph framework, where the plant cells are related to
one another via a 3D neighboring system within image stacks.
For a given cell i in the thk slice ,k tS within an image stack at
time point t , its neighbor set consists of the 2D neighboring
cells and the 3D neighboring cells across the adjacent slices

1,k tS  and 1,k tS  within the image stack. As shown in Fig. 3 (b),
the 3D neighbor set of the given cell i in the 3D local graph

iG can be denoted by 1 2 8 9 10 25{ , ,..., , , ,..., }i j j j j j jN . It
includes the 2D neighboring cells 1 2 8{ , ,..., }j j j and the 3D
neighboring cells 9 10 25{ , ,..., }j j j in the adjacent slices 1,k tS 

and 1,k tS  . The 3D neighboring cells are obtained through the
2D local graph matching model [5].
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Fig. 3. 2D and 3D local graphs. The first order distance 1( , )D i u and the second order distance 2 ( , )D i u are illustrated in the 2D local graphs.

2.2. 3D Local Graph Distance Functions

Based on the definitions above, we construct the distance
function ( , )D i u for any two 3D local graphs iG and uG ,
which are related to their central cell pairs ( , )i u . ( , )D i u is
composed of the first order distance function 1( , )D i u between
central cells, and the second order distance function 2 ( , )D i u
defined on edges connecting pairs of neighboring cells.

First Order Distance
1( , )D i u is the distance between the central cells i and u in

3D local graphs iG and uG . It is composed of the shape
histogram distance and the cell area difference, as below

1 1 2( , ) ( , ) i u
i u

i

A A
D i u KLD h h

A
 


  (1)

Let the shape histogram associated with cell i in image slice
,k tS at time t be ih , and that with cell u in the next image

slice , 1k tS  at time 1t  be uh , we compute the K-L
divergence (KLD) between ih and uh [11] as ( , )i uKLD h h .

iA , uA are the cell area sizes of cells i and u . The
normalization parameters 1 and 2 are learned from a
training dataset.

Second Order Distance
2 ( , )D i u is defined on edges connecting pairs of neighboring

nodes. Its computation relies on the fact that if cell i is
matched to u , then the relative position of i with respect to
its neighboring cell j should be very similar to that of u
with respect to its neighboring cell v . Let’s define the cell i
in slice ,k tS with its 3D neighboring cells 1 2{ , , }i mj j j   N ,
and another cell u in the next slice , 1k tS  with its neighboring
cells 1 2{ , , }u nv v v   N . m and n are the number of neighbors

for cells i and u respectively. If m n , that means i and u
are not the corresponding cell pair, so we assign a large value
to the second order distance. Otherwise, the second order
distance can be computed as below,

2 1 2
1 1

( , ) ( ) ( )
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      (2)

Here the first component is the edges’ orientation differences
in 3D local graphs iG and uG , kj

i is the orientation angle of
the edge between the central cell i and its neighboring cell
kj , measured relative to a horizontal axis; kv

u is the
orientation angle of the edge between cell u and its
neighboring cell kv .The second order component is the
differences between the corresponding edges’ lengths, where
ic and uc are the centroid positions of cell i and u

respectively, and
1j

c ,
2j

c …
mj

c are the centroid positions of
the neighbors of cell i ,

1v
c ,

2v
c …

nv
c are the centroid

positions of the neighbors of cell u . The normalization
parameters 1 and 2 are learned from a training dataset.

2.3. 3D Local Graph Matching

Given two central cells i and u in 3D local graphs iG and

uG across two time instances respectively, the 3D local graph
distance between iG and uG can be expressed as

1 2( , ) ( , ) ( , )D i u D i u D i u  (3)
In the existing 2D local graph matching model, the cell

pair with the least distance will be regarded as the seed pair,
from which we grow the cell correspondence sequentially to
find all possible cell matches, the details is illustrated in [4].
In this paper, we find the top few most similar cell pairs as the
seed cell pairs instead, which can be used in our proposed
multi-seed 3D local graph matching framework.

2.4. Multi-seed 3D Local Graph Matching
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Fig. 4. Different plant cell datasets.

Compared to the 2D local graph matching model, the 3D local
graph matching model will be more robust to find the cells’
correspondence by incorporating the cells’ 2D neighborhood
information and 3D spatial context [12, 13] across the adjacent
image slices. Besides, the 2D local graph matching model is
employing a cell correspondence growing scheme starting
from a seed pair, so it tends to accumulate errors, especially in
noisy images. Different from such iterative searching strategy
used in the 2D local graph matching method, a multi-seed
based majority voting scheme is proposed to rectify such
possible matching errors. The final matching results are the
majority voting output from the 3D local graph matching
results generated by multiple seeds. Therefore, the possible
matching errors caused by one single seed can be rectified by
the voting of matching results from other seeds.

3. EXPERIMENTAL RESULTS

The confocal laser scanning microscopy based live-imaging
is set up to acquire time-lapse plant cell image stacks [14-16].
Each 3D image stack, taken at every 3 hours, consists of a
series of images of optical cross-section SAMs that are
separated by approximately 1.5 uM, as shown in Fig. 1 and
Fig. 3. We have tested our proposed multi-seed 3D local
graph tracking approach on multiple SAM datasets, as shown
in Fig. 4. The algorithm is implemented using MATLAB on a
PC with 3.3 GHz CPU and 4 GB memory.

Fig. 5 illustrates the comparison of the matching results
between the existing 2D local graph matching method (a1, a2),
3D local graph matching method (b1, b2), and our proposed
multi-seed based 3D local graph matching algorithm (c1, c2),
in two consecutive image frames. The cells in the same color
across different time points represent the same cells. As
denoted by the red box, it is seen that the 3D local graph
matching model outperforms the 2D local graph matching
model, and the 3D local graph matching model with multiple
seeds achieves even better tracking results.

In order to demonstrate the strength of the proposed
multi-seed based 3D local graph tracking approach, we first
compared the tracking performance of the 3D local graph
matching model and the 2D local graph matching model in

Fig. 5. Cell tracking results by different methods. The cells in the
same color across different time points represent the same cells.

TABLE 1
TRACKING ACCURACY COMPARISON

Dataset
2D local
graph

matching

3D local
graph

matching

Multiple seeds +3D
local graph
matching

A 80.37% 89.09% 96.95%

B 84.21% 90.71% 98.44%

C 77.50% 87.97% 95.26%

Table 1, from which we can clearly see that the proposed 3D
local graph matching model achieves much higher matching
accuracy in all datasets. Furthermore, we compared the
tracking accuracy of the proposed multi-seed based 3D local
graph tracking approach with the 3D local graph matching
model with one seed (as used in the existing 2D local graph
matching model), it is seen that the proposed matching
approach achieves much higher tracking accuracy than the 3D
local graph matching model with one seed only.

4. CONCLUSIONS

In this paper, a 3D local graph matching model with multiple
seeds is proposed to track the plant cells in a densely packed
structure, by exploiting the tight 3D contextual information.
The combination of 2D local graph information and the
spatial information across different image slices within the
3D image stacks greatly improves the plant cell tracking
accuracy. Furthermore, a multi-seed voting scheme is
proposed to automatically rectify possible matching errors
caused by one seed only. The effectiveness of the proposed
method is evidenced by the experimental results.
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