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ABSTRACT

Combined PET-CT scan is an important diagnostic tool in modern
medicine, e.g. for staging or treatment planning in the field of on-
cology. Especially in small structures, like a tumour, textural varia-
tions visible in a PET image are not visually recognizable within a
CT scan from the same region. Thus, both modalities are necessary
for diagnosis. Since both techniques expose the patient to radiation,
it would be desirable to get the same information about metabolic
activity contained in the PET image from a CT scan only. To investi-
gate the relationship between both imaging modalities, we propose a
machine learning approach to automatically identify regions in a CT
scan corresponding to areas with high FDG uptakes in a PET image.

Index Terms— CT, PET, Radiomics, machine learning, support
vector machine

1. INTRODUCTION

In modern medicine, medical imaging techniques like Magnetic
Resonance Imaging (MRI) or Computational Tomography (CT)
are widely-used in clinical diagnostic. While these sophisticated
imaging modalities can give detailed visual information about a
patient’s physiology, they are not able to visualize metabolic activ-
ities, a crucial step in some clinical diagnostics. For this purpose,
Positron Emission Tomography (PET), which utilizes a positron-
emitting tracer injected into the patient’s body, is a commonly used
method to locate and quantify ongoing metabolic processes [1]. One
particularly popular tracer is the radioisotope fluorine-18 which is
synthesized into fludeoxyglucose (FDG) and used for the majority
of clinical PET scans. In oncology, for instance, FDG-PET is used
to observe the regional glucose uptake which corresponds to the
concentration of cancer cells and can thus give information about
size and location of a tumour, indicate the presence of metastases
and help to monitor the success of treatment. The FDG uptake in
the affected body tissues is measured in Standardized Uptake Values
(SUV). Since PET gives only low resolution information about the
patient’s physiology beyond the detected glucose uptake, it is often
combined with a CT scan to get information about both concen-
tration and detailed location of a tumour [2–4]. Figure 1 presents
an example for a CT and a PET image from a PET-CT scan of the
thorax. While the CT image clearly shows the anatomic structure of
the body, the corresponding PET shows a metabolic activity map.

Although this combination of imaging modalities is a powerful
diagnostic tool, one drawback is the high dose of radiation the patient
is exposed to. Being able to identify the metabolic activity struc-
tures in a CT scan without PET imaging and its radioactive tracer is
thus an interesting problem. It is, however, also a challenging task
since PET FDG uptake and CT attenuation values are based on dif-
ferent physical and physiological processes. Thus, a direct relation
between the two values is not necessarily given. However, the same

Fig. 1: Example of a CT (left) and PET (right) image from a PET-CT
thorax scan. Yellow represents a region of high FDG uptake.

physiological processes are the underlying cause for findings in both
modalities. For example, tumor necrosis results in reduced FDG up-
take but also reduced CT density due to decrease in perfusion. Thus,
CT density can be a surrogate for tumor glucose metabolism in such
a case.

It is, however, very difficult to find visual indicators for varying
SUVs in the CT image (see Figure 2). One possible solution might
be found in the field of Radiomics, i.e. the utilisation of machine
learning on medical imaging problems. A trained classifier might be
able to learn from examples how to detect PET-like image structures
in CT which are hardly visible to a human observer. We propose
to train a Support Vector Machine (SVM) with patched CT images
which are labeled according to the regional FDG uptake in the co-
registered PET images from a PET-CT scan. By using this classifier,
we then try to locate regions of SUVs higher than a defined thresh-
old.

To the best of our knowledge, there has been no previous work
on this specific task. Research in related fields focuses on other prob-
lems, e.g. the automated detection or segmentation of tumours by
utilizing PET or PET/CT features. Bi et al. [5], for example, con-
ducted a study on detecting regions of high FDG uptake in whole-
body-MRI with an SVM trained with features extracted from PET
and CT images. Another work presented by Arimura et al. [6] fo-
cused on automated contouring of tumours, also by training an SVM
with metrics derived from both PET and CT data. Kerhet et al. [7]
used features extracted from PET images to train a classifier to pre-
dict the most appropriate SUV threshold for tumour segmentation.
All works mentioned above use features derived from FDG uptake
to classify physiological structures as malignant or benign, rather
than analysing the distribution of SUVs within a tumour.

Other research groups focus on intratumour heterogeneity as a
method to estimate treatment success or patient survival rates [8–10].
Such studies use features derived from PET or PET/CT images to
find links between regional FDG uptake within tumours and patient
outcome. They focus more on the relationship between image char-
acteristics and treatment success by either investigating PET features
or combining PET and CT, but not on the relationship between both
modalities like we do.
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Fig. 2: A 2D slice from a segmented tumour to demonstrate the visual differences between both imaging modalities. From left to right: CT
image, PET image and the label representation of the PET image.

2. GENERATING LABELS FROM PET IMAGES

The main objective of this study is to investigate, whether it is pos-
sible to identify regions in a CT scan corresponding to areas with
high FDG uptakes in a PET image. The focus lies on smaller vol-
umes of interest (VOIs), i.e. already segmented tumour masses. Fig-
ure 2 shows an example of a 2D slice of a segmented tumour from
a CT scan, the corresponding PET image and the PET images’ la-
bel representation which indicates the location of high SUV regions
compared to the rest of the tumour. Comparing the structures of the
PET and CT images, the challenge of visually identifying the PET
intensities within the CT scan becomes apparent. The PET image
shows distinctive intensity variances, high intensity regions (see or-
ange areas on the label representation on the right) can easily be
distinguished from areas of lower SUVs. In the CT image, however,
it is hard to interpret gray values in relationship to the FDG-uptake in
the PET image. While one lower intensity region located in the lower
middle part of the region of interest (ROI) seems to correspond to a
slightly darker shade in the same region of the CT, the lower SUV
area in the upper left of the PET image cannot be visually identified
in the CT scan. It is our hope, that such structures in a CT scan al-
most hidden to human observers can be detected by a classifier, then
amplified and made visible without PET imaging.

For this purpose, we train a classifier with labeled CT images
whose labels are derived from co-registered PET images. Both PET
and CT images of the VOIs are processed slicewise. Each slice is
divided into overlapping patches and the mean intensity of a PET
patch is converted into a SUV class label for the corresponding CT
patch. These labeled CT patches are used as input to train a classifier
that is hopefully able to detect which regions of a new CT image
correspond to high SUV regions in a PET image.

First, the typical SUV range of PET images is divided into Nc

intensity bins corresponding toNc SUV classes. For each PET patch
of size pPET × pPET, the mean intensity value is calculated and its
corresponding SUV class is used as a label for the respective CT
patch of size pCT × pCT. Since PET has a lower resolution than
CT, pCT > pPET applies. As a first step, this study focuses on a
binary classification task. The patches are thus divided into only two
classes: one for high SUVs and one for the remaining patches.

3. CLASSIFICATION

3.1. Feature extraction

First, features are extracted from the input data, i.e. a labeled CT
patch, and stacked into a feature vector x̃. For this purpose, we used
ImFEATbox, our comprehensive toolbox for feature extraction and
analysis [11, 12]. We tested several combinations of features based
both on visual image characteristics (e.g. texture, contrast) and other

numeric metrics (e.g. moments, transforms). The best results were
obtained using a combination of the following categories of features
with number of features Nf per category:

1. Intensity features (Nf = 7) [13]
2. Zernike moment features (Nf = 92) [14, 15]
3. Fourier transformation features (Nf = 300) [12]
4. Gabor filter features (Nf = 3600) [16]
5. Lacunarity features (Nf = 6) [17]

3.2. Feature selection

Before the classification step, the dimensionality of the feature vec-
tor x̃ is reduced to obtain a reduced feature vector x for further pro-
cessing. While reducing the dimension of the feature space via prin-
cipal component analysis [18] worked quite fast, it was not able to
clearly identify a good feature combination for our problem. At the
end, 140 principal components were required to achieve an adequate
test accuracy.

Sequential floating forward selection (SFFS) [19] proved to be
a better option for our problem, despite the high computational cost.
With SFFS, the classifier could be trained with only 7 features while
still achieving a high test accuracy. Especially features from the fam-
ilies of Fourier transform and Gabor filters were among the first fea-
tures chosen by SFFS.

Two-dimensional Fourier transform of the CT patches showed
a difference in the spectrum between regions with high SUVs and
lower SUVs. For all patches, the main energy lies around the zero
frequency. The percentage of the energy in the higher frequency
bins, however, is roughly 20 times higher in high SUV than lower
SUV regions. This confirms our hypothesis, that high SUV regions,
although hardly visible to a human observer, can be identified in CT
images using suitable features derived from hardly visible structures
or transforms of the CT patches.

3.3. Classifier

For classification, we chose a binary soft-margin Support Vector Ma-
chine (SVM)

ŷi = sgn

(
N∑

j=1

αjyjk(xj , xi) + b

)
(1)

s.t. 0 ≤ αi ≤ C ∀ i = 1, ..., N

and
N∑
i=1

αiyi = 0

where ŷi represents the estimated label for sample xi, αi are the
dual Lagrange coefficients, C a constant soft margin weight and b
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the offset to the origin of the coordinate system. For the kernel we
use a radial basis function (RBF)

k(xj , xi) = exp(−γ ‖ xj − xi ‖
2) (2)

where γ is a positive constant.
Tests with a grid search and 5-fold cross-validation to determine

the soft-margin parameter C and the kernel parameter γ showed that
a combination of C = 23 and γ = 2−15 leads to good results.
For the implementation of the classifier, we utilised the LIBSVM
library [20].

4. EXPERIMENTS AND RESULTS

This study and the conducted experiments, which are described in
the following, are intended to be a first proof of concept to investigate
whether detecting PET-like image structures within CT images is
possible.

4.1. Dataset and experimental setup

We used a total of 41 FDG-PET/CT images from 41 patients with
lung cancer, which were acquired on a clinical PET/CT scanner
(Siemens Biograph mCT). The segmentation of the primary lung
tumour on the CT images to define the volumes of interests (VOIs)
was performed by an experienced radiologist. These VOIs were then
transferred from CT to the co-registered PET images. For further
processing, only image content within the VOIs, i.e. the tumour,
was considered (example see Figure 2).

PET and CT images were divided into patches as described in
section 2 with patch sizes of 4 × 4 for PET and 8 × 8 for CT, re-
spectively. Intensity values of the PET patches were categorized into
Nc = 2 bins (with the threshold at 2.5 ·104) and used as class labels
for the corresponding CT patches. This process resulted in a total
number of 261032 labeled CT patches for the training and testing of
the SVM. The large amount of available training data leads to a high
computational complexity for training the classifier and especially
for conducting the SFFS. Therefore, since initial tests with a small
feature set showed similar results for a reduced number of training
samples and the full dataset, we only used the images of 12 patients
as dataset D for training and test. The images of the remaining 29
patients were later used for validation on unseen patients with vary-
ing tumour physiologies to study the generalization capability of the
classifier.

For the training process, D was randomly split into a training
set and a test set. 70% of the labeled samples were used for training,
the remaining 30% for testing. To achieve robust results, the random
splitting of the dataset and the training of the SVM was performed
10 times. As a final result, the mean test accuracy of all 10 trained
SVMs was calculated

ACC =
1

10

10∑
i=1

TPi +TNi

N
(3)

where TPi and TNi are the numbers of true positives and true neg-
atives for the i-th splitting and N denotes the number of samples
under test.

4.2. Classification results

With the 7 features selected by SFFS from our best combination of
feature categories (see section 3.2), we achieved a mean test accu-
racy of ACC = 70.94% with a standard deviation of 0.34. While
this accuracy still leaves room for improvement, it is a first proof that
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Fig. 3: Accuracies of all 29 tested images of unseen patients (blue
bars) and the mean test accuracy ACC (red).

the classifier is generally able to detect PET-like structures within CT
images.

We also investigated the ability of the trained SVM to classify
CT images of the remaining 29 unseen patients. We achieved a mean
test accuracy of ACC = 76.97% with a standard deviation of 10.33.
Figure 3 shows the results for all unseen patients. The higher accu-
racy compared to the accuracy achieved with dataset D originates in
the different nature of the patients’ tumours. For example, the image
for which an accuracy of 100% was achieved contained no high SUV
region, which was correctly perceived by the classifier. The classifier
proved to be able to identify most of the regions of high SUVs with
a tendency to detect larger or more high SUV areas than are actually
present. For large ROIs, the results were considerably better than for
small ROIs with only a few or no high SUV regions, e.g. slices from
small tumours or the lowest or highest slices of larger tumours. In
these smaller ROIs, the SVM tends to have a high false-positive rate,
i.e. wrong classification of low SUV as high SUV patches. These
findings will be included in the design of future experiments.

The most important aspect in our study is, however, the visual
resemblance between the original PET images (converted to their la-
bel representation) and the metabolic activity maps estimated from
the CT patches. Evaluation of the inhomogeneities within the tu-
mour is an important aspect in e.g. treatment planning in oncology.
Thus, it is more important to get a good visual approximation of the
high SUV regions than to only look at the absolute accuracy for all
patches. Accordingly, we investigated how similar the images actu-
ally look. While some images showed a significant amount of errors,
there were a lot of images where the classifier was able to correctly
identify regions in a CT scan corresponding to areas with high FDG
uptakes in a PET image.

Some examples of 2D slices with well classified high SUV re-
gions are presented in Figure 4. The orange areas represent the high
SUV regions and the red areas the remaining tumour. While some
patches are wrongly classified, the general shapes of the high SUV
regions in the estimated images agree well with these in the PET
images, even for difficult shapes like in the images of the two upper-
most rows.

Figure 5 shows two examples of images for which the classifier
was not able to correctly identify regions of high SUVs. The upper
row displays a slice of a tumour, where no regions of high SUVs are
present in the original image. The SVM, however, classified more
than half of the CT patches as high SUV regions. The opposite is the
case for the example in the lower row. It should be noted that both
images in this Figure are relatively small compared to the images in
Figure 4. This further encourages the assumption that the classifier
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(a) original image (b) estimated image

Fig. 4: Examples of 2D slices reconstructed from well estimated
patch labels (right column) and the corresponding original PET
slices converted to labels (left column).

(a) original image (b) estimated image

Fig. 5: Examples of estimated and reconstructed 2D slices (right
column), where the trained model could not sufficiently determine
the right class, compared to the original label images (left column).
The upper row shows a case, where a significant amount of high
intensity areas were detected while none are present in the original
image. In the lower row is an example, where the classifier failed to
recognize the high SUVs.

has difficulties to handle patches from smaller structures. The reason
might be that patches from such images are influenced too much by
the borders between tumour and background.

Both Figures represent an oberservation we could make for most
images: for larger structures, the similarity between original label
image and estimated metabolic activity map tends to be higher, for
smaller ROIs the accuracy decreases. Other images lie, of course,
between both extremes, but the overall tendency suggests that esti-
mating PET-like structures from CT images is generally a feasible
problem.

5. DISCUSSION

Our experiments showed promising results as a proof of concept
as well as some drawbacks of the proposed approach in its cur-
rent status. We got good visual resemblance between the estimated
metabolic activity maps and the original PET label images for larger
ROIs. The classifier was able to detect not only the location of many
high SUV regions within such ROIs, but also its general shape.

However, our proposed method tends to detect more regions of
high SUVs than present. In some cases, especially in smaller tu-
mours or slices on the edges of a VOI, the classifier has difficulties
to correctly differentiate between classes. Furthermore, it is up to
now only able to perform a binary SUV classification. A more de-
tailed detection of PET structures within the CT images in terms of
a mulit-class SUV classification is desirable in the future, e.g. to
further differentiate between medium and low SUV regions.

To overcome these difficulties, we plan on one hand to investi-
gate other features or feature combinations to find a better represen-
tation of the CT images. On the other hand, we are going to exper-
iment with deep neural networks to replace the SVM. This way, we
can avoid hand-crafted features and instead let the classifier learn the
best representation by himself. Moreover, we intend to extend the
classifier to a multi-class model to be able to discriminate between
more than two SUV classes.

6. CONCLUSION

In this study, we presented a machine learning approach to detect
high intensity PET structures within CT images. We were able to
show that our approach of using PET intensities as class labels to
classify CT image patches works in general. In our experiments, we
identified features derived from the Fourier transform and Gabor fil-
ters as promising descriptors for identifying regions of high SUVs
in CT images. Moreover, we were able to train a classifier to de-
tect such regions, although the results obtained so far leave room for
improvements. One major drawback of the proposed method is the
decrease in classifier precision for smaller ROIs. Another drawback
is the tendency of the classifier to detect too many patches as region
of high SUVs.

In the near future, we aim to improve our proposed approach by
further investigating which features are most suitable for our applica-
tion as well as by using a deep learning approach. We also intend to
not only be able to identify regions of high SUVs, but to discriminate
between more intensity classes to produce a more accurate approxi-
mation of the structures of PET images.
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[16] Joni-Kristian Kämäräinen, “Gabor features in image analysis,”
in 3rd International Conference on Image Processing Theory,
Tools and Applications, IPTA 2012, October 15 - 18, Istanbul,
Turkey. 2012, pp. 1–2, Institute of Electrical and Electronics
Engineers IEEE.

[17] T.G. Smith Jr., G.D. Lange, and W.B. Marks, “Fractal methods
and results in cellular morphology dimensions, lacunarity and
multifractals,” Journal of Neuroscience Methods, vol. 69, no.
2, pp. 123 – 136, 1996.

[18] H. Hotelling, “Analysis of a complex of statistical variables
into principal components,” J. Educ. Psych., vol. 24, 1933.

[19] P. Pudil, F. J. Ferri, J. Novovicova, and J. Kittler, “Floating
search methods for feature selection with nonmonotonic crite-
rion functions,” in Proceedings of the 12th IAPR International
Conference on Pattern Recognition, Vol. 3 - Conference C: Sig-
nal Processing (Cat. No.94CH3440-5), Oct 1994, vol. 2, pp.
279–283 vol.2.

[20] C. Chang and C. Lin, “LIBSVM: A library for support vector
machines,” T. Intell. System. Tech., vol. 2, pp. 1–27, 2011.

1069


