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ABSTRACT

Remote Photoplethysmography (rPPG) is a contactless non-
invasive method for measuring physiological signals such as
the heart rate (HR) using the light reflected from the facial
tissue. Signal decomposition approaches are used to extract
the heart rate signal from the subtle changes in the skin color.
In this paper, we show that a recently proposed signal de-
composition method, namely nonlinear mode decomposition
(NMD), is quite successful in estimating the heart rate signal
from face videos in the presence of subject motion. Experi-
mental results on the PureDL dataset show that NMD based
HR estimation gives better results as compared to well-known
methods in the literature, which use Independent Component
Analysis (ICA) for signal decomposition.

Index Terms— photoplethysmography, NMD, PPG,
heart rate estimation

1. INTRODUCTION

Photoplethysmography (PPG) is a non-invasive method used
both in contact and non-contact approaches for measuring
physiological signals such as the heart rate (HR), or the respi-
ratory rate (RR) using the light reflected from or transmitted
through the tissue. Recent years have witnessed a boom in
non-contact PPG research, thanks to successful developments
which allow the PPG signal to be extracted from face images
under ambient illumination using cheap cameras [1].

Photoplethysmography etymologically is a compound
term where the “plethysmo” means “enlargement” in Greek.
It was first mentioned by Hertzman et al. in the 1930s [2].
PPG is based on the fact that the light which penetrates
the microvascular layer in the skin is absorbed by the oxy-
hemoglobin in the blood directly proportional to the blood
volume. Thus, the changes in the reflected or transmitted
light provides us an estimate of the heart activity in terms of
the HR (heart rate) and HRV (Heart Rate Variability), which
is the heart rate change with respect to the time providing
valuable information about the metabolism.

Photoplethysmography methods can be categorized into
two groups: contact and non-contact methods. An example of

contact photoplethysmography is the fingertip pulse oxiome-
ter which is widely used in medical centers today [3].

In non-contact photoplethysmography, the physiological
parameters are extracted using cameras from the subtle color
changes on the face caused by the heart beat. Much of the
emitted light from a light source is reflected from the surface
of the skin. Whereas, a small amount is refracted and travels
to deeper layers such as the epidermis, and the dermis. The
light is refracted and reflected while crossing each skin layer,
resulting in a very small amount being absorbed by the oxy-
hemoglobin in the blood. Within every heart beat cycle, the
amount of blood in the tissue changes periodically, so does the
amount of light absorbed by the oxy-hemoglobin. Although
the amount of light that reaches the capillary region is very
small, the periodic changes in the reflected light from this re-
gion can be measured in terms of color changes in the skin.
Since it is low in power, measurement of the cardiac cycle is
prone to be spoiled by noise. Other estimation artifacts are
caused by head and facial motion and illumination changes.

In this work, we present a method for non-contact heart
estimation using facial videos based on a recently proposed
signal decomposition method, namely the nonlinear mode
decomposition (NMD) [4], which is shown to be extremely
noise-robust as compared to other signal decomposition
methods in the literature. Therefore, it is very suitable for
the signal decomposition task in rPPG, especially when there
is subject motion, which introduces noise to the skin color
information.

The organization of the paper is as follows. In Section 2,
we give an overview of the related work on rPPG and point
out potential areas for research. In Section 3, we provide an
overview of the nonlinear mode decomposition method. In
Section 4, we describe how we adopted the NMD method
for the problem of remote heart rate estimation. In Section
5, we give our experimental results and show that NMD gives
promising results as compared to other popular signal decom-
position methods in the literature, especially when there is
noise due to subject motion. Finally, in Section 6 we provide
concluding remarks.
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2. RELATED WORK

Most of the noncontact photoplethysmography methods in the
literature follow similar basic steps, which are shown in Fig.
1. After the video frames are captured, a region of interest
(ROI) is selected on the face at each frame in which the PPG
signal is to be estimated. In order to obtain a high quality PPG
signal, selection of the ROI is important. The ROI should
include all pixels that contains the PPG signal, whereas it
should not include the pixels that lack the PPG signal (due to
occlusions, background etc.). Although ROI selection is chal-
lenging, efficient selection of the ROI dramatically decreases
the false estimations. There are a number of studies in the
literature that mainly focus on the ROI selection [5], [6], [7].

Fig. 1. Basic steps of a noncontact PPG based heart rate esti-
mation algorithm

After the selection of the ROI, the color values of all pix-
els within the ROI are averaged. While a group of the stud-
ies used only the green channel [8], [9], [10], a significant
number of methods used all three of the RGB color compo-
nent values [3], [11], [12]. One of the first methods that use
all three color components is based on the independent com-
ponent analysis (ICA) [13]. Three signals constructed from
average R, G, B values in the ROI are linearly separated into
three independent components using ICA. One of the result-
ing components after ICA is expected to be the HR signal [3],
[11].

The next step is peak detection either in time domain or
frequency domain to estimate the heart pulse rate. The peak
locations in the time domain signal can be estimated, which
show the start of systole phase of the cardiac cycle. The num-
ber of peaks within a minute represents the heart pulse rate.
While detection of the peak locations in time is responsive to
instant heart rate changes, it is easily affected by noise [1].

The frequency domain analysis of the decomposed com-
ponents requires sufficient number of samples, such as a 30-

second long sliding window with 1 second shifts, leading to
a delay in estimation of the changes in the heart pulse rate.
Selecting a small temporal window size results in noisy esti-
mates. Thus, there is a tradeoff between robustness and re-
sponsiveness [1].

In the last step, additional constraints are applied, such as
discarding the frequencies that lie out of a certain range (e.g.
by band-pass filtering the [30-250] beats per minute range) or
applying coherency constraints.

Rigid and non-rigid motion of the subject, rapid illumina-
tion changes in the environment, and occlusions are the main
factors which lead to errors in estimation of the HR. In or-
der to improve the estimation accuracy, different ROI selec-
tion [9], signal decompostion methods [3], [11], illimunation
models [10], [7], multispectral aproaches [14], and multicam-
era setups [15] have been proposed and compared. However,
these challenges still require further research, since the accu-
racy of rPPG is still not high enough to be used in clinical
settings.

In this work, we present a nonlinear mode decomposi-
tion based heart rate estimation method, which is robust to
noise, adaptively parametrized, and which results in physi-
cally meaningful modes.

3. NONLINEAR MODE DECOMPOSITION

Nonlinear Mode Decomposition (NMD) is a recently pro-
posed signal decomposition method, which separates a sig-
nal into its physically meaningful oscillations, while remov-
ing noise [4]. Since real oscillations are rarely purely sinu-
soidal, it is assumed that a given signal s(t) is composed of
nonlinear modes ci(t) and some additive noise η(t):

s(t) =
∑
i

ci(t) + η(t). (1)

The components ci(t) are of the following form:

c(t) = A(t)v(φ(t)) = A(t)
∑
h

ah cos(hφ(t) + ψh) (2)

where v(φ(t)) = v(φ(t) + 2π) is a periodic function of the
phase and can be expressed using Fourier series expansion
as shown by the summation in (2). The goal of nonlinear
mode decomposition is to determine the characteristics of the
NMs in (1) by estimating the amplitudes A(t), phases φ(t),
the amplitude scaling factors ah and phase shifts ψh of the
harmonics indicated in (2).

NMD is based on time-frequency representations (TFR)
of the signal s(t). The TFR used is either the windowed-
Fourier Transform (WFT) or the wavelet transform (WT).
There are four basic steps of NMD, which are given are as
follows:

(i) Extracting the fundamental harmonic of an NM from
the TFR representation.
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(ii) Finding all possible harmonics of the fundamental har-
monic.

(iii) Selecting the true harmonics of the same NM.
(iv) Building the nonlinear mode from fundamental and

true harmonics, subtracting it from the signal and reap-
plying the same steps starting from (i) to estimate the
remaining modes from the residue.

For details of the above steps the reader is referred to [4]. The
advantages of NMD over other signal decomposition meth-
ods in the literature, such as empirical mode decomposition
(EMD) [16] and independent component analysis (ICA) [13]
have been stated as follows [4]:

• NMD is extremely noise-robust.
• The parameters of the algorithm are adaptively chosen.
• NMD returns modes which are physically meaningful

since if an individual mode has a non-sinusoidal wave-
form, NMD will not decompose it into a few oscilla-
tions with simpler waveforms.

As an example of NMD, let s(t) be a signal with two NMs
and a white noise 0.5η(t):

s(t) = (10− 0.03t)cosφ1(t) + 10cosφ2(t) + (3)
+0.5η(t),

where

φ1(t) = 10πt,

φ2(t) = 14πt+ 2πsin(2πt/10).

A plot of the TFR of the signal in (3) is given in Fig. 2
(a). This TFR is obtained by WFT. The NMD decomposition
of the signal is given in Fig. 2 (b), which shows that the two
oscillation modes have been successfully separated.

4. HEART RATE ESTIMATION USING NMD

We have adopted the nonlinear mode decomposition method
to solve the problem of remote heart rate estimation from face
videos (step 4 in Fig. 1).

At each frame of a given video, the face of the subject is
first detected using the Viola-Jones face detector [17], which
returns the location of the face using a rectangular window.
Since some non-face regions are also included, we use a sub-
region within this window as the region of interest (ROI). The
ROI rectangle is obtained by decreasing the width of the win-
dow by 60%. We keep the ROI selection process simple in
this work, to show the advantages of NMD over other signal
decomposition methods under noisy conditions.

Then, the green (G) color component of each pixel within
the ROI is averaged at each frame and concatenated, giving
a 1D signal in time, G(t). The first heart rate estimate is ob-
tained after a signal of length 30 sec is obtained from the av-
eraged G values of 900 frames (30 sec x 30 fps = 900). In

(a)

0 5 10 15

f (Hz)

0

5

10

|P
(f

)|

Mode 1 in the Frequency Domain

0 10 20 30

t (seconds)

-20

-10

0

10

20

X
(t

)

Mode 1 in the Time  Domain

0 5 10 15

f (Hz)

0

1

2

3

4

|P
(f

)|

Mode 2 in the Frequency Domain

0 10 20 30

t (seconds)

-10

-5

0

5

10

X
(t

)

Mode 2 in the Time  Domain

(b)

Fig. 2. (a) TFR representation of signal s(t). (b) Recovered
Modes of s(t) given in (3).

order to obtain the next heart rate estimation, the window of
900 frames is shifted by 30 frames, providing a 96.7% overlap
between two successive windows.

Before applying NMD to each 30 sec length window
G(t), we normalize them as follows:

G̃(t) =
G(t)− µG

σG
(4)

where µG and σG denote the mean and standard deviation of
the average G values in the window, respectively. The NMD
algorithm is then applied to the normalized signal G̃(t), which
decomposes the signal obtained from the face pixels into its
modes. In our implementation, we run the NMD algorithm to
decompose the signal into five modes. We expect the number
of modes to be five, each component corresponding to the
heart rate, the respiratory rate, the rigid head motion, the non-
rigid facial motion and illumination changes, if any.

Each estimated component signal ci(t), i = 1, . . . , 5,
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is then converted to the frequency domain via FFT (fast
Fourier transform) to obtain Ci(f), where f denotes the fre-
quency. Then, Ci(f) are band-pass filtered with a passband
of [0.75Hz - 2.5Hz] (45bpm - 150bpm). The component
which represents the heart rate signal is selected as the one
which contains the “clearest” peak in the passband [0.75Hz
- 2.5Hz]. The “clarity” of the peak is assessed using the
max-median difference approach (MMD), which is defined
as:

i∗ = argmax
i

[
max(|Ci(f)|)−median(|Ci(f)|)

]
(5)

where f takes values in the range [0.75Hz - 2.5Hz].
Given a face video, the frequency with the highest power

in |Ci∗(f)| (obtained from the first 900 frames) is selected
to be the first estimated HR. The subsequent estimates are
restricted to lie within±0.2Hz (±12bpm) around the previous
estimate HR for consistency. If none of the modes have a
frequency that satisfies this restriction, the previous estimate
of the HR will be used as the next estimate.

5. EXPERIMENTAL RESULTS

We used the PureDL dataset during the experiments [9], [18].
PureDL dataset contains face videos of 8 subjects under 6
different experimental setups:

(i) Steady: the subjects look at the camera from a frontal
view and avoid any head motion.

(ii) Talking: the subjects are requested to talk without any
additional head motion.

(iii) Slow translation: the subjects move their heads parallel
to the camera plane with a speed of about 7% of the
head height in pixels.

(iv) Fast translation: the subjects move their heads parallel
to the camera plane, with the speed doubled.

(v) Slow rotation: the subjects look at the targets sequen-
tially, which are placed with 35 cm intervals around the
camera.

(vi) Fast rotation: the subjects look at the targets sequen-
tially, which are placed with 70 cm intervals around the
camera.

The videos are recorded with a rate of 30 fps with 640x480.
The ground truth HR data have been captured with a pulse
oxiometer with a sampling rate of 60 Hz. Each video in the
dataset is decomposed into image files named with the times-
tamp of the frame and ground truth heart rate values mea-
sured during the video recording. For simplicity, we have not
resampled the PPG signal from 30 Hz to 60 Hz by applying
spline functions to align with the ground truth signal. Instead,
we used a mapping to the nearest timestamp. Since we know
the timestamp of the last frame of each 1 second boundaries,

SETUP NMD-HR ICA [3]
|µ| σ |µ| σ

Steady 9.59 23.27 2.71 10.20
Talking 17.41 34.41 40.10 34.05
Slow Translation 5.71 25.22 25.85 36.66
Fast Translation 2.34 9.90 26.76 32.38
Slow Rotation 5.50 25.58 36.83 39.95
Medium Rotation 11.55 26.46 12.10 32.26

Table 1. Experimental results of the proposed NMD-HR
method and the ICA based method [3]. The absolute mean
|µ| error and the standard deviation σ of the estimation errors
are given in beats per minute.

we have used its timestamp to search for the closest times-
tamp value in ground truth data.

In the implementation of the ICA-based method, almost
all the steps are similar to the steps of the NMD method ex-
cept, three signals obtained by averaging R, G, and B color
components are input to the decomposition step [3]. The ICA
method takes these three input signals and estimates three lin-
early independent components. Then, the [0.75 2.5] Hz in-
tervals in the power spectrum of the three components are
evaluated to determine the heart rate estimate.

The experimental results are grouped under the 6 exper-
imental setups described above. Thus, each setup has video
recordings of 8 subjects consisting of 30 heart rate estimates
leading to 240 estimates in each setup. We analyse the differ-
ences between the estimated HR values and the corresponding
ground truth values. We used the mean and standard deviation
of the error values to evaluate the performance of the NMD
method.

In Table 1, the results for the six different setups for the
proposed NMD-HR method have been given as well as the
results obtained by the ICA-based method [3], [11]. In both
methods, the “Talking” setup has the highest average error as
seen from the mean values (|µ|) of 17.41 and 40.10 in the
NMD and ICA-based methods, respectively. Nevertheless,
the NMD-HR method performs better than the ICA method
in most of the cases.

6. CONCLUSION

In this work, we presented a method for heart rate estima-
tion from face videos, which uses nonlinear mode decompo-
sition [4] to estimate the periodic cardiac signal. We showed
via experimental results that the proposed NMD-HR method
gives better results as compared to the independent compo-
nent analysis method in the literature in terms of lower av-
erage absolute error, using the MMD approach, especially in
cases containing subject motion, which introduces noise to
the color information obtained from the face. A more accu-
rate ROI selection approach, which discards non-skin pixels
on the face is expected to improve the accuracy of the results.
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