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ABSTRACT

Cone-beam computed tomography (CBCT) images often
have some ring artifacts because of the inconsistent response
of detector pixels. Removing ring artifacts in CBCT images
without impairing the image quality is critical for the appli-
cation of CBCT. In this paper, we explore this issue as an
“adversarial problem” and propose a novel method to elim-
inate ring artifacts from CBCT images by using an image-
to-image network based on Generative Adversarial Network
(GAN). Through combining the generative adversarial loss
and the proposed smooth loss, both of the generator and the
discriminator can be trained to remove ring artifacts in CBCT
images by means of image-to-image. Experimental results
demonstrate that the proposed method is more effective on
both simulated data and real-world CBCT images, compared
with other algorithms.

Index Terms— CBCT images, ring artifacts, generative
adversarial network (GAN), generative adversarial loss

1. INTRODUCTION

As a branch of important bio-imaging, Cone Beam Computed
Tomography (CBCT) has many advantages such as the high
utilization ratio of rays, precise imaging. And it has been
widely applied to the 3D implants, clinical diagnosis, and
other medical fields. However, due to the limitations of the
imaging technology [1], CBCT images often have a series of
concentric ring artifacts with different gray levels from the
surrounding pixels. The occurrence of ring artifacts seriously
affects the authenticity and quality of CBCT images, and fur-
ther interferes with the clinical diagnosis and treatment.

In the past few years, the research on ring artifacts correc-
tion has achieved great progress in the field of image process-
ing. A number of methods have been proposed to eliminate
ring artifacts and they can be roughly divided into two ma-
jor categories [2]: pre-processing methods based on the pro-
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jection sinogram and post-processing methods based on the
reconstruction image.

Pre-processing methods are performed on the projection
sinogram [3], in which ring artifacts appear as parallel vertical
lines. C. Raven et al. [4] used a low-pass filter to remove
the artifacts by applying Fourier transform to the projection
sinogram. M. Boin et al. [5] removed artifacts during the
reconstruction by using an average filter. B. Munch et al. [6]
combined wavelet decomposition and Fourier low-pass filter
to eliminate the artifacts. However, for the pre-processing
methods, it is not easy to set the related parameters and the
projection sinograms program needs the large memory space.
Therefore, post-processing methods based on reconstructed
images have been paid more attention.

Post-processing approaches are directly applied to the
reconstructed images to reduce artifacts. [7] and [8] proposed
to remove ring artifacts by using the morphological opera-
tors. A ring artifact correction method for high-resolution
micro CBCT was presented in [9] and [10], which is based
on the mean and median filterings of the reconstructed image
and worked on a transformed version of the reconstructed
image in polar coordinates. Through a linear transformation,
independent component analysis (ICA) [11] was used to de-
compose the complex image data into different independent
components, and only components containing streak artifacts
were selected to be filtered. [12] proposed to use wavelet
transform-FFT-Gaussian filtering on the reconstructed image
for ring artifact correction. Recently, in [13], a variation-
based destriping model was proposed to remove artifacts,
which includes an L1-norm-based data fidelity term and an
L0-norm/L1-norm unidirectional variation-based regulariza-
tion term. The existing post-processing methods mostly
remove artifacts by different filters, and the reconstructed im-
ages need to be corrected in polar coordinates. Interpolation
is often used to compensate the transformed image during the
coordinate transformation so that it is inevitable to result in
loss of details and blurred edges in the image.

Recently, Generative Adversarial Networks (GAN) [14]
demonstrated state-of-the-art performance in many vision
tasks by making an adversarial process alternating between
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faking and identifying, and the generative adversarial loss
was designed to evaluate the discrepancy between the gener-
ated distribution and the real-world distribution. In order to
suppress artifacts in the output images, we proposed a joint
loss strategy, which joints the target loss and the generative
adversarial loss as a new loss function. In this paper, we
explore this issue as an “adversarial problem” and propose a
novel method to gradually remove ring artifacts from CBCT
images by using an image-to-image network based on GAN.
Contributions: The contributions of this work are three-fold.

(1) Removing ring artifacts in CBCT images in the Carte-
sian coordinate system directly, so as to avoid the loss of im-
age details resulting from the coordinate transformation from
the Cartesian coordinate to the polar coordinate, which hap-
pened in traditional post-processing methods.

(2) Using Generative Adversarial Networks to remove
ring artifacts in CBCT images.

(3) Introducing the smooth loss and further combining the
smooth loss and the generative adversarial loss into GAN, (we
call it Smooth GAN).

2. THE PROPOSED METHOD

In this section, Smooth Generative Adversarial Network
(SGAN) was proposed to remove ring artifacts (Fig.1).
Firstly, we explain the proposed smooth loss and the gen-
erative adversarial loss, respectively. Then we introduce the
whole framework of the proposed SGAN and illustrate the
details of the network architecture.

2.1. Smooth Loss

The CBCT image that contains artifacts can be expressed
mathematically as

I (x, y) = S (x, y) + n (x, y) , (1)

where I (x, y) is the CBCT image in coordinates, which is
the treated image containing artifacts, S (x, y) represents the
ideal image without artifacts, and n (x, y) is the artifacts in-
formation in the CBCT image.

The gradient map can visually represent the smoothness
of the image, as shown on the left in Fig.2 (a) . The artifacts
in the brain CBCT image are very unsmooth and have the
concentric circles of noises. Calculating the partial derivative
of Eq.(1) in x and y directions to get the gradients in the x
and y directions, respectively{

∂xI (x, y) = ∂xS (x, y) + ∂xn (x, y)
∂yI (x, y) = ∂yS (x, y) + ∂yn (x, y)

(2)

In order to make sure the image is smooth enough, the objec-
tive functions can be written as

min∂xn (x, y) = min
(∑

∂xI − ∂xS
)2

(3)

Fig. 1. The general framework of the proposed method.

min∂yn (x, y) = min
(∑

∂yI − ∂yS
)2

(4)

Similarly, in order to retain the main information of the image
during smoothing, it is necessary to ensure the similarity be-
tween the smoothed image and the original input image. So
the loss function can be designed as

min
S

(
λ1
∑
p

(∂xSp − ∂xIp)2 + λ2
∑
p

(∂ySp − ∂yIp)2
)
(5)

where p indexes 2D pixels, λ1 is the regularization param-
eter that quantifies the smoothness of x direction, and λ2
is the regularization parameter that quantifies the smooth-
ness of y direction. ∂x and ∂y denote the x and y deriva-
tive operators, respectively. In this minimization model,
λ1
∑

p (∂xSp − ∂xIp)2 and λ2
∑

p (∂ySp − ∂yIp)2 are two
fidelity terms which ensure the smoothed image S is similar
to the original image I as much as possible. And they are
used to smooth the image in both the vertical and horizontal
directions.

2.2. Generative Adversarial Loss

Recently, GANs have shown strong capability in learning im-
age generative models. In the phase of training, the generative
network G is trained to map samples from noise distribution
pz to real-world data distribution pdata through playing a min-
imax game with the discriminative network D. The discrim-
inator D aims to distinguish the real samples x ∼ pdata and
the generated samples G (z) ∼ pg in the training procedure.
And the generator G tries to confuse the discriminator D by
generating more and more realistic samples. The process of
this two-player minimax game can be formulated as

min
G

max
D

Ex∼X [logD (x)] + Ez∼Z [log (1−D (G (z)))]

(6)
Therefore, we adapt the GANs learning strategy to re-

move ring artifacts in CBCT images as well. As shown in
Fig.1, the generative network with the proposed smooth loss
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Gs is used to generate smooth image S (x), given the input
image x ∈ Xinput. Meanwhile, each input image x has a cor-
responding ground-truth image yg . Suppose that all the target
images yg ∈ Ywithout−artifacts obey the distribution preal,
and then we expect the output images S (x) obey S (x) ∼
preal. A discriminative network D is additionally introduced
based on the generative adversarial learning strategy, and the
generative adversarial loss can be written as

min
Gs

max
D

Eyg∼Y [logD (yg)] + Ex∼X [log (1−D (S (x)))]

(7)

2.3. Smooth Generative Adversarial Networks (SGAN)

Based on the aforementioned generative adversarial loss and
the smooth loss, we introduce the SGAN to remove the ring
artifacts from the original CBCT images. Inspired by the DC-
GAN [15], we designed the SGAN composing of two mod-
ules: the image generative network with smooth loss Gs and
the discriminative network D (Fig.1). Both the generative
adversarial loss and the smooth loss are employed to train
the SGAN. Gs and D play the two-player minimax game
by optimizing different loss functions. Given a pair of data
(x, yg) ∈ (Xinput,Ywithout−artifacts), the loss function of
image generative network Gs and the loss function of dis-
criminative network D are formally defined as

Gs = log [D (S (x))− 1]

+

(
λ1
∑
p

(∂xS (x)− ∂xyg)2 + λ2
∑
p

(∂yS (x)− ∂yyg)2
)

(8)

and
D = − log [D (yg)]− log [D (S (x))− 1] (9)

respectively.

3. EXPERIMENTAL RESULTS

3.1. Experimental settings

We conducted experiments on both simulated and real data.
These CBCT images are all gray scale and the values of all
pixels were normalized to [0, 1]. The sizes of the images were
set as 100 × 100. We updated the generative network with
smooth loss Gs and the discriminative network D. Specifi-
cally, the SGD [16] solver with a learning rate of 0.001 and
a first momentum of 0.5 was used in network training. The
hyper-parameters λ1 = 0.5, λ2 = 0.5, and the batch size of
64 was used.

To carry out comprehensive and fair comparisons, we
compared the proposed method with three existing methods:
the wavelet Fourier filtering (WF) [6], the ring correction in
polar coordinate (RCP) [10] and the variation-based destrip-
ing model (VDM) [13]. These methods were realized using

(a) The simulated brain CBCT image.

(b) The simulated skull base CBCT image.

Fig. 2. Two simulated CBCT images and the generative pro-
cesses of them.

the source codes from the original authors and each was
run with default parameters. Our method was implemented
in Caffe and all experiments are carried out on NVIDIA
GeForce GTX 1080 Ti GPU with 32 GB RAM.

3.2. Experimental results and comparisons

Qualitative evaluation: We directly tested the proposed
method on simulated data at first. We used two kinds of
CBCT images as bases without artifacts, and simulated ring
artifacts were superimposed on them to generate the cor-
rupted images. The generated simulated data were used as
the training set to train the whole network. Fig.2 shows some
generative processes on the simulated brain CBCT images
and the simulated skull base CBCT images. Our method gen-
erated the high-quality CBCT images without ring artifacts
gradually from the simulated CBCT images after many iter-
ations of training (Fig.2). Through introducing the smooth
loss, the proposed SGAN removed more ring artifacts with
less loss of image details.

In order to further verify the effectiveness of the proposed
method, we also present the results on real CBCT images
(Fig.3). Because the real CBCT images without ring artifacts
are hard to acquire, visual inspection is probably an adequate
approach to validate the removal of artifacts. From Fig.3,
subfigure (a) are two original CBCT images whose contrasts
were enhanced properly to make ring artifacts obvious. Sub-
figure (b) shows the whole result images obtained by the pro-
posed method, where the ring artifacts are almost perfectly
removed, and the image structures are well preserved. Subfig-
ure (c) depicts the magnified portions of the original images,
where some ring artifacts can be found clearly. Subfigure (d)
shows the results processed by the WF, in which only ring
artifacts at the center of images are corrected well, but some
residual ring artifacts still exist away from the central loca-
tion. Subfigure (e) gives the results processed by the RCP,
where the details of images are basically preserved and most
ring artifacts are effectively removed. However, this method
needs to keep the balance between details preservation and
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Experimental results. (a) the real CBCT images with ring artifacts; (b) the resulting images by the proposed method; (c)
the magnified regions of the real CBCT images with ring artifacts; (d) the magnified regions of the results by the WF; (e) the
magnified regions of the results by the RCP; (f) the magnified regions of the results by the VDM; (g) the magnified regions of
the results by the proposed method.

artifacts removal, such that residual ring artifacts are visi-
ble in some regions where the intensities of the artifacts are
higher. From subfigure (f), the results processed by the VDM
are not smooth enough in some regions, although no signifi-
cant residual ring artifacts exist. As shown in subfigures (d)-
(f), the residual ring artifacts are still visible in some regions
indicated by yellow arrows. Subfigure (g) shows the results
obtained by our proposed method. The proposed method ef-
fectively removed ring artifacts while preserving details and
edges information of the CBCT images during smoothing.
Meanwhile, as shown in Fig.4, the loss of the generator and
the discriminator converges gradually.
Quantitative evaluation: We also used Peak Signal to Noise
Ratio (PSNR) and Mean Structural Similarity (MSSIM) [17]
as quantitative assessments. Table 1 shows the comparisons
on PSNR and MSSIM for the different methods on the simu-
lated skull base CBCT image. It can be observed that the pro-
posed method retains the information of the original CBCT
images to the largest extent.

Table 1. Comparison of PSNR and MSSIM for the different
methods.

Methods PSNR(dB) MSSIM
WF 43.8253 0.9646
RCP 42.9617 0.9533
VDM 45.6575 0.9724

Proposed 48.9887 0.9859

Moreover, we introduced the block total variation (TV)
and the block coefficient of variance (CV) [18] to measure
local homogeneity and smoothness of images as in [13]. We
chose three different representative blocks as ROIs in Fig.2
(b). The block TV and block CV indices calculated from the
three ROIs are compared in Fig.5. The values of our proposed
method are the closest to the base images.

Fig. 4. The loss of both the generator and the discriminator.

(a) Block TV. (b) Block CV.

Fig. 5. The bar charts of the TV and CV of the ROIs marked
in Fig.2(b).

4. CONCLUSIONS

This paper proposes the smooth generative adversarial net-
works (SGAN) to gradually remove ring artifacts in CBCT
images. As a generic framework of learning mapping rela-
tionship between paired images, the SGAN combines the gen-
erative adversarial loss and the smooth loss as a novel training
loss function. Simultaneously, an image generative network
with smooth loss Gs is trained to narrow the discrepancy ex-
plored by the discriminative networkD. Experimental results
demonstrate that our method achieves excellent performance
and it is superior to some other mainstream methods by both
qualitative and quantitative assessment.
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