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ABSTRACT

The study of brain-injured patients (or lesion-based analysis)
is a powerful paradigm for investigating structure–function
relationships using neuroimaging techniques. Voxel-based
Lesion-Symptom Mapping (VLSM) has been widely used
to detect structure–function associations in neuroimaging
studies. However this approach is based on Student t-test
for which normality does not always hold. Our aim in the
current study is twofold: 1) to confirm/refute the implication
of the classical language areas using the Language Screening
(LAST) test; and 2) to determine if it is possible to reduce
the number of patients included in the VLSM study, using
a different statistical approach. To achieve the second goal,
we propose an alternative nonparametric and Bayesian test
using Pólya trees. The approach is Bayesian, assigning prior
distributions and computing the Bayes factor of H0 (null hy-
pothesis) to H1 (alternative) ; and it is nonparametric since
the priors are put on the unknown distribution functions un-
der H0 and H1. Our results highlight that the Pólya tree
prior provides a convenient and effective way for testing two
sample differences in VLSM studies.

Index Terms— Hypothesis testing, Nonparametric Bayes,
Pólya tree, VLSM, stroke, LAST test.

1. INTRODUCTION

The two sample comparison is a fundamental problem in
statistics. The t-test is probably the most popular parametric
statistical test [1], [2]. Popular nonparametric and frequentist
approaches include Wilcoxon [3], [4], Kolmogorov-Smirnov
[5], [6] and Cramer-von-Mises [7] tests. In this work, we
consider the test problem from a Bayesian nonparametric
(BNP) perspective. BNP is a relatively new and fast develop-
ing discipline, with a great number of applications [8]. The
BNP approach has recently demonstrated its suitability in
image reconstruction [9], [10], [11]. However, while there
has been considerable interest in BNP estimation, the BNP
hypothesis testing has received little attention. It is only re-
cently that the hypothesis testing has been investigated from
a nonparametric Bayes perspective using Pólya trees priors in

the two sample case [12], [13], [14], and for more than two
samples in [15]. There are a number of attractive properties
in formulating the hypothesis testing in a BNP framework
using Pólya trees as priors. Bayesian answers have a clear in-
terpretability, as compared with the commonly used p-value.
In the Bayesian framework, one simply finds and reports the
probability that a particular hypothesis is true given the obser-
vations. The competing hypotheses are assigned probabilities
and the one with the highest probability is selected. On the
contrary, frequentist tests do not assign probabilities to hy-
potheses directly but rather to the statistic on which the test
is based. Furthermore, since it is not based on asymptotics,
the Bayesian approach can handle small sample sizes. The
Pólya tree (PT) nonparametric model allows one to center
the probability distribution at a given parametric model, thus
embedding the parametric model in a larger encompassing
nonparametric one. The PT has also a rich structure with
numerous free parameters remaining after specification of the
centering distribution. Last but not least, with the approach
taken here, integrations can be handled and calculations of
Bayes factors (BF) can be made explicitly. This is an impor-
tant point since computation of BFs is typically considerably
more challenging in Bayesian tests.

The rest of the paper is organised as follows. Section 2 re-
views the VLSM approach and the definition and basic prop-
erties of the Pólya tree. The proposed BNP based Pólya trees
test is described in Section 3. The clinical data, their treatment
and the competing statistical tests are presented in Section 4.
The numerical results are presented in Section 5. We con-
clude in Section 6 with a brief discussion and some pointers
for future research.

2. THEORETICAL FRAMEWORK

2.1. VLSM approach

The Voxel-based Lesion-Symptom Mapping (VLSM) ap-
proach involves mapping the relationship between tissue
damage and behavioural performance, on a voxel-by-voxel
basis. Let X denote a score representing task performance.
In this paper, X represents the outcome of the Language
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Screening Test (LAST) [16]. Lesion-symptom mapping aims
at detecting differences in the distributions of lesions across
groups. To this aim, lesions are first delineated (manually or
automatically) for each subject; this produces a binary lesion
map. The lesions maps of all subjects are registered to a
common stereotaxic space. Second, in voxel-based lesion-
symptom mapping, statistical hypothesis testing is performed
for each voxel. Let x = (x1, . . . , xn), denote the LAST
scores of n patients and V the number of voxels. For each
voxel v ∈ {1, . . . , V } and each patient i (i = 1, . . . , n), let
zvi be a binary variable such that

zvi =

{
1 if voxel j in patient i is lesioned,
0 otherwise.

(1)

In the LAST test, there are two subscores, namely an expres-
sion score (with 8 points being the maximum) and a receptive
one (maximum of 7 points). Only the total sum score (max-
imum of 15) is considered here. If the score is less than 15,
the patient is ranked as aphasic. Let us now define

xi

{
∈ {0, . . . , 14} if patient i is aphasic,
= 15 if patient i is not aphasic.

(2)

In each voxel v, patients can be partitioned into two groups,
group 1 and 2, with 1 consisting of those who have voxel v
lesioned. We can then define two sets of scores according to
group membership. Let

xv1 = {xi, i : zvi = 1} and xv2 = {xi, i : zvi = 0},

and define

nv1 =
∑n
i=1 1(zvi = 1) and nv2 =

∑n
i=1 1(zvi = 0),

where xv1 , with cardinality nv1 , contains the scores of patients
whose v-th voxel is lesioned; xv2 ,with cardinality nv2 , stands
for xv1 relative complement. In lesion-symptom mapping, one
is interested in whether groups 1 and 2 are significantly differ-
ent. That is given the sets of samples xv1

iid∼ F1 and xv2
iid∼ F2,

with F1 and F2 unknown1, we consider in each voxel v the
two competing hypotheses

H0 : F1 = F2 versus H1 : F1 6= F2.

The significant voxels are considered as being involved in lan-
guage disorder. This is a two sample comparison problem,
usually performed via t-tests as in [17]. In this paper, we pro-
pose to handle this via a fully BNP framework with Pólya tree
priors. We now recall the basics of Pólya trees.

1The test is voxel-based and performed voxel-by-voxel. To simplify the
notation, we do not include the voxel index in F1 and F2.

2.2. Pólya trees

The Pólya tree is a prior on a random probability distribu-
tion F on some domain X . The famous Dirichlet process
(DP) introduced by [18] is an example of a PT, although un-
like the DP the Pólya tree can select continuous distributions
with positive probability and, if necessary, even with prob-
ability one. Reference papers on Pólya trees are [19], [20],
and [21], [22], whose notations we follow. Let E = {0, 1},
Em the m-fold Cartesian product E × · · · × E with E0 = ∅.
Set E? = ∪∞m=0E

m and let πm = {Bε : ε ∈ Em} a par-
tition of X such that π0 = {X} and Π = ∪∞m=0πm. Π
denotes a collection of subsets {B0, B1, B00, B01, . . . }. Let
A = {αε : ε ∈ E?} = {α0, α1, α00, α01, . . . } denote a set
of positive numbers andW = {Wε : ε ∈ E?} a collection of
random variables.

Definition. A random probability measure F on X is said
to have a Pólya tree distribution, or a Pólya tree prior, with
parameters (Π,A) and denoted F ∼ PT(Π,A), if for every
m = 1, 2, . . . , and every ε = ε1, . . . , εm ∈ Em

F (Bε1···εm) =

m∏
j=1

Wε1···εj , (3)

where the conditional probabilities Wε1···εj−10 are mutually
independent Beta random variables,

Wε1···εj−10 ∼ Beta(αε1...εj−10, αε1...εj−11),

with Wε1···εj−11 = 1 −Wε1···εj−10, and the terms for j = 1
are W0 and 1−W0.

The parameters αε determine the smoothness of the real-
izations of F . Most of the time, one does not assign a dif-
ferent αε for each ε but instead takes αε to be constant in a
level m: αε = am, ∀m. Smoothness of generated measures
is controlled by the rate of increase of the am as one descends
the PT. Taking αε = cm2, c > 0 is a sufficient condition to
guarantee that the PT assigns probability one to the set of dis-
tributions which have densities. We shall consider such Pólya
trees. In practice, it can be difficult to elicit the partitions Π.
As for Dirichlet processes, the Pólya tree can be centered at
a chosen distribution F0 on X , so that E[F ] = F0. The sim-
plest way to do this is to take at each level m, the partitioning
subsets to coincide with the quantiles F−10 . For example, if
X = R, partition elements are at each level m,

[F−10 (j/2m), F−10 ((j + 1)/2m)), for j = 0, 1, . . . , 2m − 1,

where F−10 (0) = −∞ and F−10 (1) = +∞. Again, the pa-
rameters αε control how closely the distribution of F is con-
centrated around its prior mean F0. Choosing αε = c ×m2,
the positive parameter c controls how much weight is placed
on the centering distribution F0, playing a similar role to the
precision parameter of the Dirichlet process prior. Hanson
and Johnson [23] proved two results that indicate broadly the
effect c has on inference. As c→∞, the parametric model F0

is obtained regardless of n, whereas small values of c allow
E[F ] to closely follow the empirical distribution function.
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Pólya trees enjoy the following conjugacy property. That
is, given a PT prior F ∼ PT (Π,A) and a sample x =

(x1, . . . , xn)|F iid∼ F , the posterior distribution F |x is still
a PT with updated parameters: F |X ∼ PT(A∗,Π), where

A∗ = {α∗ε = αε + nε : ε ∈ E∗},

and nε =
∑n
i=1 1(xi ∈ Bε) denotes the number of observa-

tions in x that lie in the partition Bε. This conjugacy allows
for an exact closed-form expression of the marginal likeli-
hood. Therefore, problems traditionally encountered when
computing Bayes factors are avoided and computation can be
made efficient.

3. METHODOLOGY

In this section, we consider the case in which two independent
and identically distributed (i.i.d.) samples are observed and
we are interested in testing the potential difference between
the two underlying distributions.

3.1. Formulation of the two sample test

Suppose we have samples of sizes n1 and n2 drawn from dis-
tributions F1 and F2, respectively. Let x = (x1, . . . , xn1

)
and y = (y1, . . . , yn2) be the two samples. We wish to test
H0 : F1 = F2 versus the alternative H1 : F1 6= F2. Let
z denote the combined sample z = (z1, . . . , zn1+n2

). Un-
der the null hypothesis, both samples come from a common
distribution: F1 = F2 ≡ F0, with F0 unknown. Under
the alternative, x ∼ F1, y ∼ F2, F1 6= F2, where F1 and
F2 are also unknown. We assume independent PT priors:
F0, F1, F2

iid∼ PT (Π,A). To choose between H0 and H1,
a Bayesian test evaluates the Bayes factor, which is the sub-
ject of the next subsection.

3.2. Derivation of the Bayes factor

The test of H0 versus H1 is performed by computing the
Bayes factor (BF) of H0 to H1:

BF01 =
posterior odds

prior odds
=
P (H0|z)/P (H1|z)

P (H0)/P (H1)
, (4)

where P (Hi) is the prior probability of Hi, 0 < P (Hi) < 1,
P (H0) + P (H1) = 1. We assign equal priors to H0 and H1,
thus the BF is given by the ratio of the posterior odds. Since

P (Hi|z) = P (Hi)P (z|Hi)∑1
i=0 P (Hi)P (z|Hi)

, i = 0, 1,

the BF is reduced to

BF01 = P (H0|z)
P (H1|z) = P (z|H0)

P (z|H1)
,

and equals the ratio of the marginal likelihoods of z under H0

to that under H1 :

BF01 =

∫ ∏n1+n2

i=1 dF0(zi)dPT (F )∫ ∏n1

i=1 dF1(xi)
∏n2

i=1 dF2(yi)dPT (F )
. (5)

Authors in [24], [23] and many others follow Lavine [21] and
use a Markov expansion of the marginal density. Holmes et
al. [12] noted that the marginal density is the product of inde-
pendent Binomials-Beta trials and introduced an efficient way
to compute BF01 given by the following:

∏
j

Γ(αj0 + n
(1)
j0 + n

(2)
j0 )Γ(αj1 + n

(1)
j1 + n

(2)
j1 )Γ(αj0)Γ(αj1)

Γ(αj0 + n
(1)
j0 + n

(2)
j0 + αj1 + n

(1)
j1 + n

(2)
j1 )Γ(αj0 + αj1)

×
Γ(αj0 + n

(1)
j0 + αj1 + n

(1)
j1 )Γ(αj0 + n

(2)
j0 + αj1 + n

(2)
j1 )

Γ(αj0 + n
(1)
j0 )Γ(αj1 + n

(1)
j1 )Γ(αj0 + n

(2)
j0 )Γ(αj1 + n

(2)
j1 )

.

We next provide results demonstrating the suitability of
this approach to VLSM studies.

4. EXPERIMENTAL SETUP

4.1. Data and image processing

We analyzed data collected from 58 participants (47 men, 11
women) who had suffered a single left-hemispheric stroke in
the acute phase (< 7 days). All patients, regardless of the ar-
terial distribution of their stroke, were included. The average
age is 66.1 years (S.D.=13.4, range=19-91). All participants
were evaluated with the LAST test, with a total score between
0 and 15. Patient’s lesions were imaged with 3D T1 scans,
diffusion-weighted imaging (DWI) and Flair images within
the first week following the stroke. The lesions were delin-
eated directly on each patient’s DWI or Flair digital MRI im-
ages (choosing the best contrasted image) using OSIRIX soft-
ware. DWI or FLAIR images were yoked to the T1 images so
that the extent of the lesion could be verified on these image
sequences. Then, we obtain a mask for each patient. MRI
images were registered into MNI space (standard template of
the Montreal Neurological Institute) using the standard non-
linear spatial normalization procedure from Statistical Para-
metric Mapping (SPM12) (Wellcome Trust Centre for Neu-
roimaging) running under Matlab 2017a. We re-aligned and
co-registered 3D images with a 5-th Degree B-Spline interpo-
lation method in SPM12 and then averaged them. Masks were
re-sliced and normalized to the native space of the averaged
3D images with trilinear interpolation by voxels of 1mm3.

4.2. Statistical analysis

We now examine the performance of the proposed BNP-PT
testing method compared to some other frequentist tests:
the t-test (used in the original VLSM of [17]), and two
common frequentist nonparametric procedures, namely the
Kolmogorov-Smirnov and the Mann-Whitney tests. The total
number of analysed voxels is V = 7, 109, 137.

The original VLSM technique has been implemented us-
ing the nonparametric mapping (NPM) software, distributed
as part of the MRIcron toolset. In VLSM, t-tests are run at
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each voxel. It is usual to confine tests to voxels in which there
are at least five patients with a lesion and five patients with-
out a lesion; this is the approach we have taken in the current
study for all frequentist tests. The significance level is 5%.

Regarding the proposed BNP test, the procedure de-
scribed in Section 3 has been applied to each voxel, with x =
xv1 , y = xv2 , n1 = nv1 and n2 = nv2 . The prior parameters
values of the PT are set as follows: A = {αε1...εm = c×m2}
with c = 0.1. As already mentioned, the parameter c does
have an impact on inference. In order to investigate the sen-
sitivity of our results to the choice of c, we have looked at the
results on simulated data (not shown here) for different values
of c. We have found that small values of c perform well in
practice. The joint data have been first standardized and the
partitions Π set as quantiles of a standard normal density.
The centering of the PT to a standard Gaussian distribution
was not critical. Other experiments (not reported here) with
a partition centered on a uniform distribution showed little
difference compared to a partition centered on a standard
Gaussian. We reject H0 if P (H0|xv1,xv2) < 0.5.

5. NUMERICAL RESULTS

We first investigate the results obtained using the total num-
ber of patients, n = 58. Results not shown here, because of
space limitations, showed that all competing methods located
more or less the classical language zones known as Broca’s
and Wernicke’s area. The former is involved mostly in the
production of speech, while receptive speech has tradition-
ally been associated with the latter. Second, since one of our
goals was to reduce the number of patients involved in VLSM
studies, we tried smaller sample sizes for which the uncer-
tainty would be greater. The most remarkable results are the
ones for n = 34, shown in Fig. 1 for the four competitors.
Panel a) depicts the outcome of the classical VLSM (t-test);
b) the Mann-Whitney; c) the Kolmogorov-Smirnov; and d)
the proposed BNP-PT. The colour scale, from black to white,
indicates increasing levels of p-values for frequentist tests, or
levels of P (H0|xv1,xv2) for the BNP-PT one. Columns illus-
trate different views of the brain. Language areas are lo-
cated in the left hemisphere of the brain (at the right hand
side in images of Fig. 1), from the anterior part (Broca) to
the posterior one (Wernicke). Table 1 shows the number of
significant voxels according to the number n of patients. As
one may notice, only the proposed BNP-PT test produces sta-
ble regions when we reduce the sample size. The frequentist
tests fail in recovering the total Wernicke’s area (t-test and
Mann-Whitney), and both areas (Kolmogorov). Furthermore,
it is worth mentioning that since we perform hypothesis test-
ing for each voxel, we are faced to the multiple-comparison
problem for frequentist tests. In order to preserve the overall
type 1 error rate, the p-value of each individual test must be
adjusted. We have then performed FDR correction [25], but
no voxel was found significant for the three frequentist tests.

Fig. 1. Panel of images corresponding to: a) t-test, b) Mann-
Whitney, c) Kolmogorov and d) proposed BNP-PT (n = 34).

n 58 34
t-test 49805 43661

Mann-Whitney 64085 49754
Kolmorov-Smirnov 57032 28308

BNP-PT 45027 44523

Table 1. Number of significant voxels according to n.

This result can be explained by the small effect size and
the fact that the number of subjects with lesions at a given
voxel was small. The proposed BNP-PT approach obviates
multiple-comparison procedures.

6. CONCLUDING REMARKS

Voxel-based lesion mapping (VLSM) is useful to determine
the relationship between behavioral measures and the loca-
tion of brain lesions. However one of the main limitations of
classical VLSM studies is that they require a great number of
patients. In this work, we have proposed and implemented an
alternative Pólya tree-based test that can be applied irrespec-
tive of the sample size. The reason why we use Pólya tree
priors instead of mixtures of Pólya trees [23] is that we ob-
tain an explicit expression of the Bayes factor. This alleviates
the potentially difficult task of computing Bayes factors as in
mixtures of Pólya trees. Given the number of tests to perform
(several millions), computations should be made fast.

In this paper, all the competing methods analyse a voxel
independently of its neighbors. However, a more realistic spa-
tial model for imaging data should include spatial interactions
among neighboring voxels. Current work is undergoing in
this direction.
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