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ABSTRACT 

A modular nodule analysis system (NAS) for early lung 

nodules detection and classification is presented. Elastic 

active appearance models (AAM) are used to create realistic 

templates for nodule detection by template matching. A novel 

approach is presented to automatically annotate nodules in 

the design of the AAM templates. On sample nodules from 

ELCAP and LIDC studies, the AAM nodule templates 

provided 95% sensitivity of detection vs 80% for geometric 

templates, at 95% specificity rate. The paper presents an 

SVM classifier in a two-tier cascade framework for nodule 

classification. The classification results using Gabor features 

showed overall better results for identifying non-nodules, 

malignant and benign nodules with total average Area Under 

the Receiver Operating Characteristics (AUC-ROC) curves 

of 0.99 and average f1-score of 0.975. Results lay the 

foundation for a fully model based nodule analysis system for 

early detection of lung cancer at Stage 1a.  

Index Terms— AAM models, nodule annotation, nodule 

detection, nodule segmentation, nodule classification. 

 

1. INTRODUCTION 

Lung cancer is devastating in terms of cost and human tolls; 

it is the second most common cancer and the leading cause of 

cancer deaths in both men and women in the United States 

(US).  In 2014 (the most recent year numbers available)—

215,951 people in the United States were diagnosed with lung 

cancer, including 113,326 men and 102,625 women; 155,526 

people died from lung cancer, including 84,859 men and 

70,667 women [1]. Globally, lung cancer is the most common 

malignancy; an estimated 1.8 million diagnosed cases in 2012 

(most updated figures) and 1.6 million deaths occurring that 

same year [2]. Screening studies in the US and worldwide 

have been conducted in the past three decades, concluding 

that Low Dose CT Scanning (LDCT) is more efficient than 

Chest radiography/Chest X-ray (CXR) in early detection and 

diminished mortality, even with the risk of radiation 

associated with CT (e.g., ELCAP: Henschke et al., 1999 [3]; 

LIDC, Armato et al., 2004 [4]; NLST, Aberle et al., 2011 [5]; 

and the French Screening Study: Blanchon et al., 2007 [6]). 

These studies provided data for developing computer-

assisted diagnosis systems (CAD) for lung nodule detection.  
 

Computationally, sensitivity of nodule detection and 

classification have varied significantly. For example, in the 

past two years, Golan el al., 2016 [7], used a deep 

Convolutional Neural Network (CNN), reported sensitivity 

rate on the LIDC study of 71.2% with 10 false positives per 

scan. Setio et al., 2016 [8] reported: on 888 scans of the 

LIDC-IDRI dataset, Multi-View CNN reaches detection 

sensitivities of 85.4% and 90.1% at 1 and 4 false positives per 

scan, respectively. The most recent work (Setio, et al., 2017) 

[9] lists progress on automatic detection of lung nodules, 

using the 888 scans from the LIDC study, where leading 

solutions employed CNN, and combination of solutions 

achieved sensitivity over 95% at fewer than 1.0 false 

positives per scan. 

Despite the enormous progress made, CAD based on LDCT 

suffer from two main problems: large false positive rates in 

nodule detection and large uncertainty with classification into 

benign or malignant; e.g., Rubin, 2015 [10]. Resolving these 

issues and proper integration with PACS viewers will lead to 

workflow that facilitates both efficiency and effectiveness of 

interpretation, and widespread acceptance of CAD. 

Typical CAD systems consist of four steps (Fig.1): a) 

Filtering for removal of artifacts in the CT scans; b) 

Segmentation of lung regions from surrounding anatomy, 

without affecting nodules on the pleural surface; c) Detection 

of lung nodules by discriminating their characteristics from 

surrounding tissues; and d) Classification of nodules into 

benign or malignant.  

 
Fig. 1: Typical components of CAD systems for nodule analysis. 

 
 

 

b) Lung Tissues Segmentation c) Candidate Nodule Detectiona) Chest CT Scanning, Acquisition and Enhancement

benign

malignant

d) Nodule Classification

non-nodules

1045978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



Robust methods are in place for the first two components in 

Fig. 1, Filtering and Lung Segmentation; for example, our 

homegrown methods (filtering based on Anisotropic 

Diffusion, and lung segmentation using statistical approach 

[11, 12]) are able to extract the lung tissues with minimal 

affect to nodules larger than 5 mm, including those on the 

outside pleural surface. Reducing false positives in detection 

and improving the estimation of malignancy in Stage 1a, are 

the bottlenecks of CAD systems; and the focus of this work.  

The contributions of this paper over our related work (e.g., 

[12, 22]) are twofold: 1) we introduce a novel approach to 

annotate large nodule ensembles into the creation of active 

appearance model (AAM) templates, which significantly 

improved the detection using template matching, in terms of 

the sensitivity and specificity. 2) We improve the nodule 

classification using SVM using optimized multi-feature 

feature model, and investigate CNN-based nodule 

classification.  

2. APPROACH 

2.1 Deformable AAM models for lung nodules  

In combined AAM models of shape 𝐒(x) and appearance 

𝐀(x) of lung nodules, as a particular location x in the nodule’s 

spatial support, a single set of parameters c = (𝑐1, 𝑐2, … , 𝑐𝐿)𝑇 

is used; that is:  

 𝐒(x) = 𝑺0(x) + ∑ 𝑐𝑖
L
i=1 Si(x)   (1.a) 

 𝐀(x) = 𝐀𝟎(x) + ∑ 𝑐𝑖Ai (x)L
i=1    (1.b) 

where 𝑺0(∙) and 𝐀𝟎(∙) are average shapes and appearances, 

respectively. These parameters are identifiable using pre-

annotated nodules and dimensionality reduction by Principle 

Component Analysis (PCA); e.g., [13].  

Fig. 2 shows the average and first five Eigen nodules using 

an ensemble of size 24 per nodule category from the ELCAP 

study. Adding Eigen nodules to 𝐀𝟎(∙) would provide more 

resemblance to actual nodule topologies; their impact on 

nodule detection has not been previously studied. In the case 

of matched filter approach, templates (resemble the impulse 

responses) that possess characteristics to the desired signals 

(lung nodules in our case) which will provide better detection 

performance in terms of sensitivity and specificity. 

However, the size and topology of nodules at Stage 1a pose 

difficulties in training the AAM models. Indeed, small-size 

nodules (< 1 𝑐𝑚 in diameter) are harder to outline by the 

radiologists; e.g., the outlines by the investigators in the 

LIDC study – Armato et al., 2011 [14] – focused on the 

nodules’ heads, which if used to construct the AAM models 

won’t provide the desired specificity in nodule detection. 

Farag et al., 2013 [12] devised an empirical approach to 

annotate small-size nodules using a magnification of the ROI, 

then using curvatures measures to identify the contours’ 

critical points. From these critical points, co-registration is 

performed by estimating the rotation, translation and scale. 

After co-registration of the nodule ensemble, the PCA is 

conducted to provide the Eigen nodules (Fig. 2).  Fig. 3 shows 

critical points on the contours of four small-size nodule 

categories.  

2.2 Novel Nodule Annotation 

We automated the nodule annotation and alignment by three 

basic steps, given a larger ensemble of nodules in Stage 1a: 

a) use the manual approach on an adequate set of nodules 

under each nodule category (e.g., well-circumscribed, 

vascular, juxta-pleural, pleural tail) – e.g., using 24 nodules 

per category; b) Construct the AAM model using these 

nodules, per category, using the approach of Farag, 2012 

[11]; and c) co-register the rest of  the nodules in the ensemble 

per category with the average nodule, then perform the PCA 

on the larger co-registered nodules. 

Table 1 lists the main steps of the proposed algorithm. We 

note that nodules’ annotation for AAM modeling is 

performed offline; hence, the elaborate and time-demanding 

tasks in this step will not affect detection and classification, 

 
Fig. 3: Critical points for annotation (left to right): juxta-

pleural, pleural-tail, vascularized and well-circumscribed.  

 
Fig. 2: Average and five Eigen nodules. 

 

Table 1: Adaptive Nodule Modeling Algorithm  

i) Generate nodule models using 24 manually annotated 

nodules per categories. 

ii) Extract feature points for each nodule image per type using 

high and low curvature regions on the surface contours.  

iii) For each nodule contour, the maximum or minimal 

curvature points are used as a biomarker for registering the 

samples.  

iv) A modified Iterative Closest Point (ICP) [15] is used to 

compute the transformation matrix to register the samples 

to a commons reference; it exploits the curvature 

information in the matching process. Other methods may 

also be used (e.g., Abdelmunim et al., 2013 [16]) 

v) Construct the updated AAM model using Farag’s approach 

[11] for small objects. 
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which are conducted online. We will examine the impact of 

the ensemble size on the quality of the AMM nodule template 

for the detection vs geometric templates. 

2.3 Nodule Detection by Template Matching 

Using the updated templates for the vascular (𝑨̃0𝑉), well-

circumscribed (𝑨̃0𝑊), juxta-pleural (𝑨̃0𝐽) and pleural-tail 

(𝑨̃0𝑃), template matching is performed using the normalized 

cross-correlation (NCC) as the similarity measure (Farag, 

2012 [11] showed that NCC was optimal for detection of 

small deformable objects over 10 other popular similarity 

measures). Within the body of the lungs (blue box regions in 

Fig. 4(b)) we may only use templates 𝑨̃0𝑉 and 𝑨̃0𝑊; while 

near the pleural surface we may only use 𝑨̃0𝐽 and 𝑨̃0𝑃 with 

equal weight and an Exclusive OR thresholding for 

acceptance as a nodule candidate. We also explored several 

search approaches for accuracy, speed and weight of 

templates per lung region. 

Experiment 1: Testing was performed on the LIDC using 

1018 helical thoracic CT scans from 1010 different patients 

[22]; and ii) The ELCAP [17] has 397 nodules, 291 identified 

and categorized nodules are used in the detection process. On 

LIDC and ELCAP, we used only the average (mean) template 

model generated from the AAM approach vs parametric 

nodule template [11]; circular and semi-circular of radius 10 

pixels. For the AAM templates, we used 24 nodules per 

nodule type to design the nodule models and the rest to test 

the detection. Fig. 5 shows the ROC of 1-specificity vs. 

sensitivity, which has been reported in our earlier work [12].  

Experiment 2: Testing was performed on the LIDC only 

using 1018 helical thoracic CT scans from 1010 different 

patients. We used 24 annotated nodules per category to 

generate the averages 𝑨𝟎𝑽, 𝑨𝟎𝑾, 𝑨𝟎𝑱 and 𝑨𝟎𝑷 and, average of 

75 unannotated nodules per category, to generate 𝑨̃0𝑉 ,  𝑨̃0𝑊, 

𝑨̃0𝐽 and 𝑨̃0𝑃, using the algorithm in Table 1. We then applied 

the template matching using normalized cross-correlation as 

the similarity measure. Fig. 5(a) shows the detection curves 

(without false positive reduction) per nodule category for the 

two AAM nodule models.  Fig. 5(b) shows the average 

performance using combinations of the templates (as 

illustrated in Fig. 4(b)). These results when compared to 

results obtain using parametric templates [11], provide 

credence to the hypothesis that improved AAM models 

provide better performance in nodule detection, and it is 

worth further investigation for creating a data-driven CAD 

system. 

2.4 False Positive Reduction 

 False positive reduction in detection can generally be 

achieved by a classification step that follows candidate 

nodule detection (e.g., [8], [18] and [19]). Various criterions 

have been introduced for false positive reduction which 

include: 1) distance from the thoracic wall, 2) nodule 

area/volume and mean diameter, and 3) mean Hounsfield 

Units (HU) in the nodule’s head. In this paper, reduction of 

the false positive rates is obtained through the following: a) 

 

(a) ROC for detection by updated AAM templates. 

 

(b) ROC for detection by average AAM templates. 

Fig. 5: Adaptive effect of AAM templates on detection. 
 

       

 
Fig. 4: Nodule detection framework. a) Adaptive updates of 

AAM nodule models. Manually annotated ensemble is used to 

generate average 𝑨𝟎 nodule model per category. Larger 

ensembles are co-registered with 𝑨𝟎 to generate updated AAM 

models 𝑨̃𝟎 for detection. b) Detection performed by template 

matching followed by false positive reduction. 
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improving the AAM templates – above experiment showed 

impact on detection; and b) adding features to discern nodules 

(e.g., size, location with respect to the thorax, and HU in the 

nodules’ head region). The final outcome of the detection is 

a cropped region (nodule’s spatial support) on which we 

apply nodule classification into benign/malignant. Fig. 6 

shows a sample of detected and segmented nodules.  

2.5 Nodule Classification  

Our most recent work [22] examined features for nodule 

classification (benign vs malignant). Features based on i) 

Gabor filter [23, 24], ii) Multi-resolution Local Binary 

Pattern (LBP) texture features [25, 26] and iii) signed 

distance fused with LBP which generates a combinational 

shape and texture feature, are utilized to provide feature 

descriptors of malignant and benign nodules and non-nodule 

regions of interest. Support Vector Machines (SVM) 

classifier in serial and two-tier cascade frameworks are 

optimized and analyzed for optimal classification results of 

nodules (Fig. 7(i)-(ii)). On 1191 nodule and non-nodule 

samples from the LIDC database, where samples were 

annotated into one of three categories; Benign (B), Malignant 

(M) or non-nodule (N). The data distribution is as follows: 

723 benign and 223 malignant nodules between 3𝑚𝑚 ≤ 𝑛 ≤
10𝑚𝑚 and 245 non-nodules. We obtained the following 

conclusions: The classification results from the two-tier 

cascade SVM using Gabor features showed overall better 

results for identifying non-nodules, malignant and benign 

nodules with average Area Under the Receiver Operating 

Characteristics (AUC-ROC) curves of 0.99 and average 

F1 score  of 0.975 over the two tiers. 

Recently, Convolutional Neural Network (CNN) has been 

presented as an end-to-end framework that performs both 

feature extraction and classifier training. Fig. 7(iii), illustrates 

the proposed CNN architecture for nodule/non-nodule 

classification. In this experiment, we used the LIDC database, 

same nodule ensemble as in the SVM experiment, and cross 

validation method to evaluate the approaches. The number of 

samples was inadequate (i.e. smaller than required) for 

training a deep learning model, thus, data samples were 

augmented to avoid overfitting, the proposed classifier 

provided an F1 score  of 0.93.  

3. DISCUSSION AND CONCLUSION 

The focus of this paper has been on nodule detection and 

classification. The AAM approach to design elastic templates 

was enhanced by designing an automatic annotation 

framework using biomarkers on the nodule contours that 

highlighted the major features that were then used for 

registration. A simultaneous improvement in sensitivity and 

specificity of nodule detection was observed from using the 

new templates. The level set methods enable accurate 

segmentation of the detected nodules. A fully model-based 

mechanism to detect, authenticate (reduce false positives) and 

segment/crop the nodules for the last step in the CAD system, 

classification, is presented. Classification using cascaded 

SVM and statistical methods provided significant results in 

identifying non-nodules, malignant and benign nodules with 

average AUC-ROC curves of 0.99 and average F1 score  of 

0.975. Our current efforts is focused on deploying the NAS 

system mainly as model-based in order to enable the creation 

of a large discriminative nodule database, such that further 

enhancements and deployments of machine learning 

methodologies can be tested for detection and classification. 
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