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ABSTRACT

Diabetic retinopathy is the primary cause of blindness in the
working-age population of the developed world. Diagnos-
ing the disease heavily relies on imaging studies, which is
a time consuming and a manual process performed by trained
clinicians. Enhancing the accuracy and speed of the detec-
tion process can potentially have a significant impact on pop-
ulation health via early diagnosis and intervention. Moti-
vated by this, we propose a recognition pipeline based on
deep convolutional neural networks. In our pipeline, we de-
sign lightweight networks called SI2DRNet-v1 along with six
methods to further boost the detection performance. Without
any fine-tuning, our recognition pipeline outperforms state of
the art on the Messidor dataset along with 5.26x fewer in total
parameters and 2.48x fewer in total floating operations.

Index Terms— Diabetic Retinopathy Detection, Deep
Convolutional Neural Networks, Image Classification

1. INTRODUCTION

The World Health Organization (WHO) estimates that 422
million adults had diabetes worldwide in 2014 [1]. Diabetic
retinopathy (DR) is an eye disease associated with long-
standing diabetes. Nearly all patients with type 1 diabetes
and more than 60% of patients with type 2 diabetes have DR
[2]. Although up to 98% of severe vision loss due to DR can
be prevented with early detection and treatment, once it has
progressed, vision loss is often permanent [3]. Diagnosing
the severity scales often requires a trained clinician to exam-
ine digital color fundus photographs of the retina, which is a
time-consuming and manual process [4]. Motivated by this,
we propose an auxiliary system based on the deep convo-
lutional neural networks (DCNN) to speed up the detection
process and help clinicians screen DR in the early stages,
which is an important step toward lowering the risk of vision
loss associated with the disease.
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Convolutional neural networks (CNN) became popular in
the 1990s due to its success of handwritten character recogni-
tion tasks, but then fell out of fashion with the rise of sup-
port vector machines (SVM). In 2012, [5] rekindled inter-
est in CNN by showing a substantial improvement in image
classification accuracy on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [6]. Since then, CNN or
DCNN have been adopted widely and kept finding new suc-
cesses in various fields of image analysis, including medical
image analysis [7], classification [8], and segmentation [9].

Early works on DR detection rely on the design of hand-
crafted features, which tends to be complicated [10]. Re-
cently, CNN-based methods had significantly improved the
DR detection accuracy. Vo and Verma proposed two net-
works, CKML Net and VNXK, which are based on the net-
works of GoogleNet and VGG16 respectively, along with in-
put feature selection [11]. Wang et al. proposed the Zoom-
in-Net and dealt with classification and localization problems
simultaneously [12]. When it comes to a new testing dataset
with a different grading rule, like the Messidor dataset, the
above methods require fine-tuning. Techniques such as SVM
with linear [11] or RBF [12] kernel need to be implemented
on top of the extracted features from their proposed network.
The fine-tuning process would be expensive and even infea-
sible for large dataset. Moreover, the networks used in the
above methods are complex. Zoom-in-Net [12] required the
limit of Tesla K40 GPU card (12GB) for a single prediction.

In this paper, we introduce our lightweight networks,
SI2DRNet-v1, which improves the detection performance
in two aspects: (1) Without any fine-tuning, SI2DRNet-v1,
combined with six other boosting methods achieved 0.959
and 0.965 area under curve (AUC) on the Messidor dataset
for referable and non-referable screening, which outperforms
state of the art (0.921 and 0.957) [12]. (2) SI2DRNet-v1 re-
quires less than 700 MB GPU memory for a single prediction,
which is much less than Zoom-in-Net (12GB) [12].

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed system framework; Section 3
presents the experiment details and results; Section 4 con-
cludes the report with a discussion on the results.
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Fig. 1: System overview of our proposed DR recognition pipeline based on deep convolutional neural networks.

2. PROPOSED FRAMEWORK

Fig. 1 shows the overall DR detection system. It consists
of three important components: the preprocessing step, the
classification network, and the post-prediction. The prepro-
cessing step can be further divided into the region of interest
(ROI) detection and the image enhancement. The ROI detec-
tion filters out useless information, while the image enhance-
ment emphasizes features relevant to DR symptoms, such as
microaneurysms and hemorrhage. The classification network
aims to classify the severity scales of DR. Finally, the post-
prediction handles the problem of different DR grading sys-
tems efficiently. The details for each part are described in
Section 2.1 - 2.4.

2.1. Region of Interest Detection

The raw fundus images contain useless background informa-
tion. Based on the assumption that the background tends to
be black, we perform Otsu’s threshold [13] to find the regions
of interest (ROI). Fig. 1 (ROI detection) shows the result after
performing ROI detection.

2.2. Image Enhancement

Different contrast, color, and illumination inside the retinal
fundus images are considered as main confounding factors in
the detection of DR. [14] found that the visual appearance
of images may be significantly improved by emphasizing its
high-frequency contents to enhance the edges and detailed in-
formation within. The formulation of the classic linear un-
sharp masking (UM) is given by:

y(n,m) = x(n,m) + Ag(n, m) (D

where y(n,m) is the enhanced image obtained from the in-
putimage x(n,m), g(n, m) is the correction signal computed
as the output of a linear highpass filter and ) is the positive
scaling factor that controls the level of contrast enhancement
achieved at the output. Then, we adopt the method proposed
by [15], and implement g(n, m) as:

gn,m) = 4[G(n,m,o) x x(n,m) —xz(n,m)]  (2)

where G(n,m, o) is a Gaussian filter with o equals to 22, r
is the radius of ROI of the fundus image, * denotes the con-
volution operator, and A is set to 4. To further reduce contrast

and illumination problems, the x(n, m) is replaced with con-
stant 128 to remove the unwanted DC component and map
the background to gray color. Fig. 1 (image enhancement)
shows the result after performing preprocessing.

2.3. The DR Classification Network: SI2DRNet-v1

The purpose of the classification network is to identify the
severity scales of DR. Our proposed classification model is
based on previous DCNN designs. Our model consists of 15
convolutional layers and 5 pooling layers with 10.4 million
parameters. We use mostly 3 x 3 filters and double the num-
ber of channels after each pooling layer following the strat-
egy used in [16]. To reduce the number of parameters and
regularize the model, we use global average pooling and 1
x 1 filters to replace fully connected layers [17]. We also
use batch normalization [18] after each convolutional layer
to speed up convergence and reduce the generalization gap.
We also found that scaling the kernel size of convolutional
layer after each pooling layer from 3 x 3 to 5 x 5 increases the
performance. The larger kernels provide larger receptive field
and denser connections which are good for the final global
averaging layer. Table 1 shows the detailed architecture of
SI2DRNet-v1.

2.4. Post-prediction

Five probability values are extracted from the softmax layer,
and summed up according to the following formula:

ypp:0-p0+1-p1—|—2-p2+3-p3+4'p4 3)

where y,,, is the post-prediction value, po, p1, p2, ps, and
py4 are the probabilities of normal, mild, moderate, severe
, and proliferative DR. Then, we can decide new thresh-
olds according to our objective function, such as quadratic
weighted kappa which is more flexible than fine-tuning. For
example, a five classification problem needs four thresholds,
to1,t12,t23, 134 (0 < o1 <t < tag < t34 < 4). If ypp is
larger than ¢(; but smaller than ¢15, the predicted class would
be class 1. The same rule applies to other thresholds. Noted
that y,,, is bounded from O to 4, and we use Nelder-Mead
algorithm [19] to solve the optimization problem.
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Table 1: SI2DRNet-v1

Type Filters | Size/Stride | Output
Convolution 32 5x5/2 336x336
Convolution 32 3x3 336x336
Max Pooling 3x3/2 168x168
Convolution 64 5x5 168x168
Convolution 64 3x3 168x168
Convolution 64 3x3 168x168
Max Pooling 3x3/2 84x84
Convolution 128 5x5 84x84
Convolution 128 3x3 84x84
Convolution 128 3x3 84x84
Max Pooling 3x3/2 42x42
Convolution 256 5x5 42x42
Convolution 256 3x3 42x42
Convolution 256 3x3 42x42
Max Pooling 3x3/2 21x21
Convolution 512 5x5 21x21
Convolution 512 3x3 21x21
Convolution 512 3x3 21x21
Convolution 5 1x1 21x21

Global Avg. Pooling 21x21 1x1

3. EXPERIMENT

We implement our proposed system in Caffe [20]. In this
section, we describe the experimental setup and results as fol-
lows: Section 3.1 and Section 3.2 introduce the dataset and
evaluation metrics; Section 3.3 describes six methods to boost
the recognition performance on the EyePACS dataset; Section
3.4 presents the testing results on the Messidor dataset.

3.1. Details of Dataset

We evaluate the proposed framework on two public datasets:
EyePACS and Messidor.

EyePACS Dataset: The EyePACS dataset is sponsored
by the California Healthcare Foundation and used in the Kag-
gles Diabetic Retinopathy Detection Challenge [4]. The com-
petition organizer generously made the dataset public. It pro-
vides 35k, 11k, and 43k images for train, validation, and test
set respectively. Based on the presence of diabetic retinopa-
thy, a clinician labeled each image on a severity scale from
0 to 4, which represents normal, mild, moderate, severe, and
proliferative DR respectively. We follow the same definition
as [12], defining mild to proliferative DR as the DR class and
moderate to proliferative DR as the referable DR (RDR) class
for the better comparison with the previous works.

Messidor Dataset: The Messidor dataset is a public
dataset provided by the Messidor research program [21].
It consists of 1200 retinal images and provides a retinopathy
grade for each image from O to 3, which is different from Eye-
PACS dataset. To better compare with the previous works,
we adopt the same definition as [12], defining grade 1 to 3 as
DR class and grade 2 to 3 as RDR class.

Table 2: Four basic evaluation measurement

Actual class

Prediction € DR (RDR) ¢ DR (RDR)
€ DR (RDR) TP iy
¢ DR (RDR) FN |

Table 3: Five major evaluation metrics

Measure Formula

Specificity (TNR) | 7x+7p

Sensitivity (TPR) | 757w

Accuracy m#%

AUC [, TPR(T)FPR (T)dT
>3 w;,j O,

K 1 i;l jil
i§1 _7%:1 Wi By

*FPR = 1 - Specificity, T = threshold

*N = number of classes, w; ; = weight matrices
*F; ; = expected matrices, O; ; = observed matrices

3.2. Evaluation Metrics

We utilize five metrics to evaluate the performance of our pro-
posed framework: specificity, sensitivity, accuracy, area under
curve (AUC) of receiver operating characteristic (ROC), and
quadratic weighted kappa (k). In the following, x refers to
quadratic weighted kappa for simplicity. Based on the defini-
tion of four basic measurements in Table 2, namely true pos-
itive (TP), false positive (FP), true negative (TN), and false
negative (FN), we can derive four major evaluation metrics
(specificity, sensitivity, accuracy, AUC) as listed in Table 3.
Since the scale of DR severity has multiple levels, we intro-
duce x to compute a weighted measure for assessing classifi-
cation accuracy.

3.3. Ablation Study on The EyePACS Dataset

We train our baseline network on EyePACS train dataset for
80 epochs using stochastic gradient descent with a starting
learning rate of 0.001, step rate decay for every 20 epochs,
gamma of 0.5, weight decay of 0.0005 and momentum of
0.9 using the SI2DRNet-v1 network with input size 224x224.
During training, we only use random crops for data augmen-
tation. Then, we use the central crop of the image to get the
testing result as the baseline. We evaluate six methods to fur-
ther boost the recognition accuracy as below and compare the
results from different settings in Table 4.

Use a pre-train model: The SI2DRNet-v1 is first trained
on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [6] dataset, then fine-tuned on the EyePACS train
dataset. With a pre-training, the SI2DRNet-vl converges
faster and increases x by 31% for the validation set and 27%
for the test set.

Image enhancement: Using the image enhancement
method described in Section 2.2 can improve x by 9% for the
validation set and 7% for the test set.
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Table 4: Ablation study of the proposed recognition pipeline on the EyesPACS dataset

Baseline SI2DRNet-v1

Use pre-train model v v/ N v v v N4 v
Image enhancement v v v vV vV vV v
More data augmentation v vV v vV vV v
L1 norm Vv Vv v Vv Vv
Post-prediction vV vV vV Vv
Scale input resolution (2x) vV

Scale input resolution (3x) N4 v
10 crops for testing v
EyesPACS validation set (k) 0.466 0.611 0.671 0.707 0.723 0.754 0.801 0.808 0.808
EyesPACS test set (k) 0.471 0.601 0.654 0.704 0.709 0.742 0.796 0.802 0.804

More data augmentation: Besides random crop, we in-
clude random rotation (60°), random zoom in (0.2), and ran-
dom shear (0.2), which improve s by 5% for the validation
set and 8% for the test set.

L1 norm: L1-norm imposes more sparsity on neuron ac-
tivation than weight decay (L2-norm), which is more con-
sistent with the properties of DR symptoms. With L1-norm
penalty 0.000074, the « increases by 2% for the validation set
and 0.7% for the test set.

Post-prediction: As described in Sec 2.4, by using ~ as
the objective function and findind four thresholds based on
10% of the EyePACS train dataset, we can improve x by 4%
for both the validation and test set.

Scale input resolution: Scaling up the input resolution
can preserve more information contained in the images. If we
double the input resolution (448x448), « increases by 6% and
7% for the validation and test set respectively. If we triple
the input resolution (672x672),  increases by 7% and 8% for
the validation and test set respectively. The performance gain
from resolution scale-up saturates at 672x672.

With the above six methods and 10 crops for testing, we
arrive at optimal performance of SI2DRNet-v1.

3.4. Experiment Results on The Messidor Dataset

We follow the same evaluation procedure as [12] and conduct
two binary classifications for fair comparison with previous
works. A key advantage of our method is that we do not need
to train an extra SVM on top of the softmax layer; All we
need is to compute new thresholds based on the given dataset.
Then, we use AUC to quantify the performance. Table 5 com-
pares the results of our method with previous works. To the
best of our knowledge, we achieve the highest AUC for both
DR and RDR classification on the Messidor dataset. At a
specificity of 0.5, the sensitivity of SI2DRNet-v1 is 0.978 and
0.984 for the DR and RDR tasks, which outperform state of
the art (0.960 and 0.978) [12].

3.5. Model Complexity Analysis

In addition to the detection performance, we also compare
the number of learned parameter and floating point opera-

Table 5: Performance comparison on the Messidor dataset

DR RDR

Method Acc. AUC | Acc. AUC
Fisher Vector [10] - - - 0.863
VNXK [11] 0.871 0.870 | 0.893 0.887
CKML Net [11] 0.857 0.862 | 0.897 0.891
Comprehensive CAD [22] - 0.876 - 091
Expert A [22] - 0.922 - 0.94
Expert B [22] - 0.865 - 0.92
Zoom-in-Net [12] 0.905 0.921 | 0.911 0.957
SI2DRNet-v1 0.905 0.959 | 0.912 0.965

Table 6: Model complexity comparison

Network ‘ Input size Params FLOPs
CKML Net [11] 451x451  71.5M  19.2G
VNXK [11] 449x449 507.4M 634G
Zoom-in-Net [12] | 492x492  55.8M  38.2G
SI2DRNet-v1 672x672  10.6M 154G

tions (FLOPs) per forwarding of our SI2DRNet-v1 with other
networks. Table 6 shows the comparison results. We ap-
proximate VNXK with one VGG16 [11], CKML Net with
three GoogleNet [11], and Zoom-in-Net with one Inception-
resnet-v2 [12]. Note that the details of above networks are not
released, hence our approximation may be an underestima-
tion. However, compared with CKML Net [11], VNXK [11],
and Zoom-in-Net [12], our SI2DRNet-v1 is 6.74x, 47.86x,
and 5.26x fewer in total parameters, and 1.24x, 4.11x, and
2.48x fewer in total FLOPs.

4. CONCLUSION

In this paper, we present a framework based on DCNN for
the DR detection. Along with six useful methods, the pro-
posed framework achieves 0.959 and 0.965 AUC for DR and
RDR cases on the Messidor dataset which outperform state
of the art (0.921 and 0.957) [12]. Furthermore, we are able
to achieve this performance with a lightweight model. Com-
pared with CKML Net [11], VNXK [11], and Zoom-in-Net
[12], SI2DRNet-v1 is more memory efficient with at least
5.26x fewer in total parameters and requires lower compu-
tation cost with at least 1.24x fewer in total FLOPs.
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