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ABSTRACT

Classification of pulmonary textures on CT images is es-
sential for the development of a computer-aided diagnosis
system of diffuse lung diseases. In this paper, we propose
a novel method to classify pulmonary textures by using a
deep neural network, which can make full use of appearance
and geometry cues of textures via a dual-branch architecture.
The proposed method has been evaluated by a dataset that
includes seven kinds of typical pulmonary textures. Experi-
mental results show that our method outperforms the state-of-
the-art methods including feature engineering based method
and convolutional neural network based method.

Index Terms— residual network, pulmonary texture,
Hessian matrix, CAD, CT

1. INTRODUCTION

Diffuse lung diseases exhibit several kinds of opacities that
are widely distributed inside lungs on computed tomography
(CT) images [1]. Due to various variations of lung diseases,
the opacities show complex textures that are difficult to be
distinguished, even for some experienced radiologists. A
computer-aided diagnosis (CAD) system is required to help
radiologists automatically and precisely diagnose diffuse lung
diseases on CT images. An essential technique to establish
such a CAD system is to automatically classify which kind-
s of pulmonary textures local 2D or 3D region-of-interests
(ROIs) inside lungs belong to [2]. Fig. 1 shows seven cat-
egories of typical pulmonary textures on CT images. Since
these textures are very complicated due to variations of both
global appearance and local structures with specific geome-
try, it is not an easy task to achieve classification results with
high accuracy.

Traditional methods to classify pulmonary textures usu-
ally extract powerful features followed by the training of a
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Fig. 1. Examples of pulmonary textures on CT images.
They are consolidation (CON), honeycombing (HCM), nodu-
lar opacity (NOD), emphysema (EMP), multi-focal ground-
glass opacity (M-GGO), reticular ground-glass opacity (R-
GGO) and normal pulmonary tissues (NOR).

discriminative classifier [2]. These methods usually adop-
t existing classifiers including artificial neural network [3],
support vector machine [4][5], K-nearest neighbor classifi-
er [6][7], naive baysian classifier [8] and random forest [9].
Besides, they concentrate on designing excellent features
to describe lung tissues. In earlier time, researchers make
an effort to design handcrafted features, such as six fea-
tures derived from basic image processing techniques [3]
and statistical measures to quantify spacial variations of in-
tensity [8][10][7]. Sørensen et al. [6] combine local binary
pattern and intensity histogram to classify emphysema tex-
tures. Later, learning based methods are introduced in feature
engineering to yield more powerful feature representations.
For example, the bag-of-features and sparse representation
based schemes are utilized to classify typical textures for
diffuse lung dieseases [4][5][11].

Recently, Deep networks have had a big impact in many
fields of computer vision. It unifies feature engineering and
classifier training into an end-to-end framework, and has
achieved superior performance [12][13][14]. Deep learning
has also been utilized in the classification of pulmonary tex-
tures. For example, restricted Boltzmann machines are em-
ployed to classify pulmonary opacity and detect airway [15],
which show better performance than standard filter banks.
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Fig. 2. The architecture of the deep neural network with dual-branch.

Anthimopoulos et al. [16] have designed a convolutional
neural network (CNN) to classify seven types of pulmonary
textures. Then, transfer learning is applied in their later
work [17], where classification performance is slightly im-
proved by pre-training the CNN-based network on publicly
available texture databases followed by fine-tuning on lung
tissue data.

Although these attempts utilizing deep learning have
achieved better results than the methods based on handcraft-
ed features, the classification accuracy is still not satisfied for
the application in a practical CAD system. We notice that
these methods do not have a very deep architecture, which
is essential to exploit underlying information from data and
demonstrated to be effective [18]. For example, the CNN-
based network proposed in [16] only contains eight layers
including five convolutional layers and three fully connected
layers. This shallow network does not have enough repre-
sentation capacities to fully reveal the potential information
embedded in tiny data structures and leads to unsatisfied clas-
sification results. Inspired from the recent work of residual
network [19] that designs a very deep network with skip con-
nections on each residual block, we use the similar network
architecture to deal with the pulmonary textures classification
problem.

Besides, some categories of pulmonary textures are sim-
ilar in appearance. For example, MGGO looks quite identi-
cal with RGGO because both of them contain ground-glass
opacity, which increases the difficulty of classification with
the appearance attribute only. As we observe, although these
similar textures cannot easily be distinguished from their ap-
pearance, they are characterized by structures with specific
geometry information, e.g., RGGO exhibits structures with
reticular shape that is not presented in MGGO. Therefore,
geometry information is another important attribute that is
complementary to appearance, and should be utilized togeth-
er with appearance to develop a deep neural network. So far,
we have not found any works, which consider to extract the

geometry information via deep networks for the pulmonary
textures classification.

In this paper, we propose a novel method to classify pul-
monary textures by using a deep neural network. Our network
has a dual-branch architecture separately extracting appear-
ance and geometry cues via each deep residual network and
fusing both information for texture classification. We evalu-
ate the proposed method on a dataset, which contains seven
types of pulmonary textures. Experimental results show the
efficiency of the carefully designed deep network.

2. PROPOSED METHOD

2.1. Network Architecture

As we notice that pulmonary textures contain both appear-
ance and geometry cues, we design a deep neural network to
utilize both of them for classification. As shown in Fig. 2,
our network architecture contains two branches, i.e., appear-
ance branch and geometry branch, each of which is composed
by fifteen convolutional layers coupled with skip connections
and two max-pooling layers. Then three fully-connected lay-
ers are used to concatenate the two branches together for the
classification. The appearance branch extracts information
of intensity variation from CT image-patches directly, while
the geometry branch extracts valid shape information of tiny
structures from the eigen-values derived from Hessian matri-
ces of original CT image-patches. The two branches have
almost the same configurations but different inputs. Detail-
s about the calculation of the eigen-values are shown in the
section 2.2.

Specifically, the inputs of the appearance branch are CT
image-patches with the size of 32 × 32, while the counter-
parts of the geometry branch are the 3D tensor fields with the
same size of corresponding image-patches. Each branch is
constructed with simple block structures including convolu-
tional layer, max-pooling layer and skip connections similar
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to the deep residual network [19]. Note that, the number of
convolutional kernels is gradually increased with a factor of
2, while the feature map size is halved when convolutional
kernels are doubled to save computing costs.

2.2. Eigen-Values Derived from Hessian Matrices

The inputs of the geometry branch are derived from the Hes-
sian matrices of image intensity function at each pixel of CT
image-patches. Hessian matrix is embedded with rich geom-
etry information of local intensity structure, since its eigen-
values correspond to the second order derivatives of intensi-
ty along specific directions. Due to this character, Hessian
matrix analysis are widely used to extract intensity structures
with specific shapes from medical images [20], such as ves-
sels or blobs. In this paper, we calculate eigen-values from
Hessian matrices at each pixel to extract geometry cues em-
bedded in pulmonary textures.

Given I(x, y, z) is the CT intensity at a pixel on CT
image-patches, we can calculate the Hessian matrix by using
the definition illustrated in Eq. 1.
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The 3×3 Hessian matrices are calculated on every pixel of CT
image-patches. By decomposing these Hessian matrices, we
can calculate three eigen-values at each pixel. These eigen-
values are arranged to be cubes with dimension of 32×32×3,
which are embedded with geometry cues of textures. These
cubes are fed into the geometry branch of the deep network
to extract the underlying geometry information.

2.3. Implementation

The proposed deep network is implemented by using the
Tensorflow framework [21]. We utilize two kinds of active
functions in the network. Specifically, rectified linear unit-
s (ReLU) are used for all convolutional layers and leaky
rectified linear units (Leaky-ReLU) are applied for fully-
connected layers. The parameter α in Leaky-ReLU is 0.9 and
the kernel size of max-pooling layers is 2 × 2. The network
is trained by using the cost function of cross entropy which is
minimized by stochastic gradient descent.

3. EXPERIMENTS

3.1. Data and Experimental Protocol

Our database includes 217 CT images scanned from different
patients in Osaka University hospital. All CT images are cap-
tured from a GE Discovery CT750 HD CT scanner with the
tube voltage of 120kVp and the current of 213mAs. The im-
age data on the axial direction is reconstructed by a 512×512

Table 1. Recognition accuracy of deep neural network with
different configurations. The proposed dual-branch network
is denoted with the prefix of DB-ResNet-18, and the single
branch network is denoted as ResNet-18.

Table 2. Comparison of performances of different methods,
which are the LeNet [12], bag-of-features based method [4],
the CNN-based method (CNN-8) [16], residual network
(ResNet-18) and the proposed dual-branch deep network
(DB-ResNet-18).

matrix with the slice thickness of 0.67mm. There are 30 CT
images captured from different patients with mild or no dif-
fuse lung diseases. Since no pulmonary opacities exhibit on
these CT images, they are used to extract 2D image-patches
for the texture of normal lung tissues. The rest 187 CT im-
ages are captured from different patients with severe diffuse
lung diseases and they are used to extract patches for different
textures of diffuse lung diseases.

Image-patches are extracted from CT images according
to the following procedure. An experienced radiologist firstly
selects three axial plains where there are typical pulmonary
textures on each CT image. Together with the other two
experienced radiologists, they respectively delineate typical
regions containing pulmonary textures on previously se-
lected CT plains by using a graphical user interface based
drawing tool. The delineated regions from different radiolo-
gists are processed by a logical operation of AND to extract
the common-agreed regions, which are sampled by raster-
scanning with a stride of 8 to extract potential image-patches
with the size of 32 × 32. Only image-patches whose centers
are inside the common-agreed regions are reserved for exper-
iments. Finally, we totally extract 72,348 CT image-patches.

All methods are evaluated by the following training-
validation-testing protocol. We train different methods on a
training set, and turn their hyper parameters on a separate
validation set. After all hyper parameters are optimized, we
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evaluate the performance on a testing set. In experiments,
54,392 patches are used for the training and validation, and
the rest 17,956 patches for testing. CT images that are used
to extracted patches for testing set are not mixed with the
ones for training/validation sets. We adopt two measures to
evaluate the classification performance for different methods.
One is the recognition accuracy, which is defined as the ratio
of the number of correctly classified samples and the total
number of testing samples. The other is the average F-value
over different classes whose definition are given by Eq. 2.

Favg =
2

7

7∑
c=1

rc × pc
rc + pc

(2)

where rc is the recall of the class c, which is defined as the
ratio of the number of samples correctly classified as c and
the number of samples in class c, and pc is the precision of
class c, which is defined as the ratio of the number of samples
correctly classified as c and the number of samples classified
as class c.

3.2. Results and Discussions

We train several models of the proposed network with differ-
ent configurations, which are listed in Table 1. Kernel size
is evaluated from 2 × 2 to 4 × 4 for the convolutional layers
(DB-ResNet-18-a, b, c). Experimental results show that the
kernel size alters the performance largely and a smaller con-
volutional kernel leads to better classification results. A deep
network has a huge number of parameters and it requires lot-
s of data for training. However, data are usually limited in
practice. A smaller kernel in convolution can largely reduce
the parameters, and makes the training converge better. Sim-
ilar results have also been reported in [16], where the kernel
size of 2 × 2 makes the CNN-based method achieve the best
result. Besides, we also evaluate the necessity of the max-
pooling layers for the proposed method. We train a deep net-
work without the two max-pooling layers (DB-ResNet-18-d)
and find that the performance is decreased. This could be
because that the max-pooling layers reduce dimensions for
image-patches and eigen-values, and leads to less parameters
in the deep network.

In order to verify the efficiency of the dual-branch ar-
chitecture extracting features from both appearance and ge-
ometry cues, we train a residual network that has a single-
branch to only exploit appearance information (ResNet-18 in
Table 1). It has the same depth as the dual-branch network
to ensure a fair comparison. Experimental results show that
the dual-branch architecture can achieve superior results. Es-
pecially, the classification of both MGGO and RGGO can be
improved by using the dual-branch network, illustrated by the
confusion matrices given in (c) and (d) of Table 3. Therefore,
it is necessary to design a deep network with dual-branch ar-
chitecture to fully exploit underlying information of both ap-
pearance and geometry.

Table 3. Confusion matrices of different methods, together
with recalls (rc) and precisions (pc) for each kind of textures.
Ground-truth labels are given in each row and predicted labels
are given in each column.

The proposed network is compared with four methods in-
cluding two state-of-the-art methods [4][16]. Table 2 sum-
marizes the comparison results, and the detailed confusion
matrices are given in Table 3. LeNet [12] is the first con-
volutional network applied for image recognition task, how-
ever it achieves the worst result. Since it cannot be compa-
rable with the others, we omit its confuse matrix in Table 3
to save the space. The bag-of-features based method was
proposed in our previous research [4], where K-Means clus-
tering was utilized to extract discriminate features followed
by the classification based on a SVM classifier. The perfor-
mance of the bag-of-features based method is approximate to
the CNN-based method [16], where the network depth is only
eight. Note that, the parameters of the CNN-based method
have been carefully turned and the performance reported in
this paper is higher than the original research [16]. This result
illustrates that a shallow network cannot reveal the capacity of
deep learning and a deeper network is required in pulmonary
texture classification. Through the detailed comparison, it can
be seen that the proposed deep network with dual-branch ar-
chitecture is efficient to classify seven kinds of pulmonary
textures and outperforms all competitors. Therefore, we con-
clude that the proposed deep network has achieved the state-
of-the-art performance in the classification of pulmonary tex-
tures.

4. CONCLUSION
We proposed a novel method to classify pulmonary textures
by utilizing a deep network with a dual-branch architecture,
which favors exploiting underlying information of both ap-
pearance and geometry on pulmonary textures. Experimental
results showed that the proposed method outperformed four
methods, including two state-of-the-art methods [4][16]. This
method can be applied for the segmentation of pulmonary
opacities for the CAD system of diffuse lung diseases. We
will research it in future.
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