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ABSTRACT 

A challenging issue in computerized detection of clustered 

microcalcifications (MCs) is the frequent occurrence of false 

positives (FPs) caused by local image patterns that resemble 

MCs. We develop a context-sensitive deep neural network 

(DNN) for MC detection, aimed to take into account both 

the local image features of an MC and its surrounding tissue 

background. The proposed approach was evaluated on the 

accuracy both in detecting individual MCs and in detecting 

MC clusters on a set of 292 mammograms using free-

response receiver operating characteristic (FROC) analysis. 

The results demonstrate that the proposed approach could 

achieve a significantly higher accuracy in detected 

individual MCs; incorporating image context information in 

MC detection can be beneficial for reducing FPs. 

Index Terms—Computer-aided diagnosis (CAD), clustered 

microcalcifications, deep neural network (DNN), deep 

learning. 

1. INTRODUCTION 

Breast cancer is currently the most frequently diagnosed 

non-skin cancer in women.  It is estimated that about 

252,710 new breast cancer cases and 40,610 breast cancer 

deaths will occur among women in the US in 2017 [1]. 

Mammography is an effective screening tool for diagnosis of 

breast cancer. It can detect about 80%-90% of breast cancer 

cases in women without symptoms [1]. One important early 

sign of breast cancer is the appearance of clustered micro-

calcifications (MCs), which are tiny calcium deposits that 

exhibit as bright spots in mammograms (Fig. 1). Clustered 

MCs can occur both in benign cases and in malignant cases. 

In the literature, computerized methods for detection of 

clustered MCs are referred to as computer-aided detection 

(CADe), the purpose of which is to serve as an alert to the 

radiologists by detecting the presence of suspicious regions 

for examination in screening mammography. In these 

methods, detection of clustered MCs is typically performed 

in two steps [2-5]. In the first step, an MC detector is applied 

to locate the candidates of individual MCs in a 

mammogram; afterward, the detected MCs are grouped into 

clusters according to a set of clustering criteria.  

While successful in achieving high sensitivity, a 

challenging issue facing MC detection methods is the 

frequent occurrence of FPs. This is because the response in 

an MC detector is susceptible to local image patterns that 

resemble MCs. Indeed, there are several known factors that 

can contribute to the occurrence of FPs in mammograms, 

including MC-like noise patterns, linear structures, 

inhomogeneity in tissue background, imaging artifacts, etc 

[6]. There have been studies on how to suppress FPs in MC 

detection. These methods typically exploit not only the 

image characteristics of the MCs themselves but also their 

surrounding tissues. For example, noise equalization 

techniques were developed for reducing the noise variability 

in a mammogram [7]; background removal methods were 

used to suppress the inhomogeneity in tissue background 

[8]; image features associated with linear structures were 

also incorporated for reducing FPs [4,9]. 

Recently, we developed a one-step approach [10] to 

detecting the presence of clustered MCs in mammograms. 

Instead of first detecting the MCs individually, we applied a 

convolutional neural network (CNN) to determine directly 

whether an image region contains an MC cluster or not. 

With this approach, the input to the CNN classifier was 

formed by a large image window (~1 cm2) which contains 

not only the individual MCs but also their surrounding 

image context. This approach was demonstrated to be more 

robust to the FP patterns in mammograms when compared to 

several existing MC detectors [10]. However, this detector is 

intended only for identifying suspicious regions for 

subsequent examination; it does not specify the locations of 

individual MCs within a detected region.   

Built on the success with our approach in [10], in this 

study we investigate the feasibility of extending it by also 

incorporating local MC features such that it could improve 

the accuracy in detecting individual MCs. In computer-aided 

diagnosis (CADx), accurately detecting the individual MCs 

in a cluster is important, because the image features of the 

detected MCs are further analyzed for classification as being 

benign or malignant [11-12]. Studies have shown that the 

accuracy of detected individual MCs can impact on the 

CADx performance [13-15]. 

Toward this goal, we develop a deep neural network 

(DNN) architecture in order to take into account not only the 

local image features of an MC but also its surrounding 

image context for MC detection. The detector network is 

formed by two subnetworks for classifying whether an MC 

is present or not at a detection location, one for extracting 

the local image features and the other for learning the image 

features of its surrounding background. Consequently, the 

detector response is automatically adapted to the image 
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background at an MC. In the experiments, we evaluated the 

proposed approach both for the task of correctly identifying 

individual MCs in a given image region and for the task of 

detecting the presence of MC clusters in mammograms.  

2. METHODS  

2.1 Motivation and overview of detector architecture 

We formulate MC detection as a two-class classification 

problem, wherein a classifier is employed to determine 

whether an MC object is present (class 1) or absent (class 0) 

at a location under consideration in a mammogram. The 

classifier is trained through supervised learning, for which 

examples of MC objects and non-MC objects are used to 

optimize the classifier model. 

Given the localized nature of individual MCs, it is 

desirable for the classifier to examine the image features 

only within a small neighborhood around an MC object. On 

the other hand, it is also beneficial to examine the image 

features in the surrounding background of an MC in order to 

suppress the occurrence of potential FPs. A straightforward 

solution would be to simply apply the detector to an image 

window that is much larger in extent than the MC. However, 

this can be problematic, because the individual MCs may 

occur in close vicinity of each other. 

Out of these considerations, in this study we propose a 

context-sensitive detector by taking into account both the 

local image features and the surrounding image background 

of an MC. As illustrated in Fig. 2, at a detection location, we 

apply two co-centered image windows as input to the 

classifier simultaneously, one for characterizing the image 

features of an MC object while the other for describing the 

properties of the surrounding image background. For the 

classifier, we consider a deep neural network (DNN) 

structure, as illustrated in Fig. 3. It consists of two 

subnetworks, one operating on the local image window and 

the other on the surrounding image background. The 

resulting image features from the two subnetworks are fed 

together into the fully-connected layers for classifying 

whether the input object is an MC or not. 

2.2 Architecture of context-sensitive DNN 

As illustrated earlier in Fig. 3, the subnetwork in the first 

branch of the detector network is used to characterize the 

contextual information surrounding an MC (hence termed 

global subnetwork), whereas the subnetwork in the second 

branch is used to extract the local image features of an MC 

object (hence termed local subnetwork). The two 

subnetworks are trained to extract and optimize the relevant 

contextual and local image features simultaneously.  

Conceptually, the input image window to the global 

subnetwork should be sufficiently large in extent so that it is 

representative of the image context surrounding the 

detection location (such as linear structures). In contrast, the 

input image window to the local subnetwork should be small 

enough to cover a single MC object (to avoid overlapping 

with other MCs), as in a local MC detector [3]. Based on 

these considerations, in the experiments, the global image 

widow was set as 95×95 pixels in size as in the direct MC 

cluster detector [10], and the local image window was set to 

be 9×9 pixels as in an MC detector [3].  

The two subnetworks in the DNN classifier are each 

formed by a cascade of several convolutional (Conv), batch 

normalization, nonlinearity, and max-pooling (Pooling) 

layers, followed by several fully connected (FC) layers for 

final classification output. In each subnetwork, Conv layers 

are used to extract the features in the input image at varying 

spatial scales. In this study, all the Conv kernels are set to be 

3 3×  in size. The batch normalization layers are used to deal 

with the issue of internal covariate shift during training [16]. 

The nonlinearity layers are used to produce a non-linear 

transformation on the output of the neurons; in this study, we 

consider rectified linear units (ReLU). The max-pooling 

layers are used to achieve non-linear down-sampling of the 

feature maps. The output at each max-pooling layer is 

generated for every other location (i.e. stride 2) by taking the 

maximum value in the 3 3×  neighborhood of the location. 

The FC layers play the same role as in a standard feed-

forward neural network. The input to the first FC layer is 

formed by all the features from the two subnetworks. In the 

final output, a softmax activation function is used. The 

output can be interpreted as the probability of an input 

belonging to one of the two classes. 

2.3  Model training and validation 

For model training and validation of the DNN, samples of 

MC objects were extracted for each of the marked MCs in a 

set of training mammograms (Sect. 3.1). For each MC 

object, both an MC window and a global image window 

were simultaneously extracted (Fig. 2) and were formed as 

one input. Given that there are no MCs in most of the area in 

a mammogram, 20 times as many non-MC samples as the 

MCs were also randomly extracted from the background 

tissue area of each mammogram. To balance the number of 

samples from different mammograms, no more than 150 MC 

samples were extracted from a mammogram.  

To enlarge the set of training samples, the following 

augmentation operations were applied to each training 

sample: 1) flipping the image windows left-right, 2) flipping 

the image windows up-down, and 3) rotating the image 

windows by 90 ̊, 180 ̊, and 270 ̊, respectively. No data 

augmentation was used for the samples in the validation set. 

For network training, the various unknown parameters 

were determined by using the adaptive moment estimation 

(Adam) method [17] to minimize the binary entropy loss. To 

overcome potential model overfitting, a stochastic dropout 

technique [18] with probability 0.5 was applied during 

training. We experimented with many variants of the 

architecture by varying the number of Conv layers in the two 

subnetworks (3 to 8 for the global subnetwork, and 1 to 4 for 

the local subnetwork); the one with the lowest classification 
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error in the validation set is shown in Fig. 3 (7 and 3 Conv 

layers in the global and local subnetworks, respectively).  

3. EXPERIMENTS AND RESULTS 

3.1  Mammogram dataset  

In this study we made use of 521 screen-film mammogram 

(SFM) images from 297 cases and 188 full-field digital 

mammogram (FFDM) images from 95 cases. All these 

images were collected by the Department of Radiology at 

the University of Chicago. Each mammogram was of 0.1 

mm/pixel in spatial resolution and had at least one cluster of 

MCs which was histologically proven. The MCs in each 

mammogram were manually identified by a group of 

experienced radiologists, which were used as ground truth in 

our evaluation. The dataset was randomly partitioned into 

three subsets, one with 167 cases (300 images) for training, 

one with 67 cases (117 images) for validation, and one with 

158 cases (292 images) for testing.  

Prior to MC detection, a background subtraction step as 

in [10] was applied to each mammogram in order to 

suppress the inhomogeneity in the tissue background. 

Afterward, the resulting image was normalized to have zero 

mean and unit standard deviation. 

3.2  Performance evaluation  

3.2.1 Accuracy in detecting individual MCs  

We first evaluated the accuracy of the proposed DNN in 

detecting individual MCs from mammogram regions. For 

this purpose, we allocated 125 mammograms from the test 

set and cropped two regions (500×500 or 1000×1000 pixels 

depending on the cluster size) from each image, one 

containing clustered MCs, and one without any MCs. We 

then applied the proposed DNN detector to these two ROIs 

for MC objects.  

To summarize the detection performance, we conducted 

a free-response receiver operating characteristic (FROC) 

analysis. An FROC curve is a plot of the true-positive (TP) 

fraction of the MCs detected versus the average number of 

FPs per unit image region (1 cm2 in area) with the decision 

threshold varied over an operating range [19]. For clarity, 

this is referred to as MC-based FROC analysis.  

To speed up the detection process, we first used the 

difference-of-Gaussians (DoG) detector [2] to obtain a set of 

potential candidates of MCs in each image region, and then 

applied the proposed DNN classifier to these candidates to 

determine the MC objects.  

3.2.2 Accuracy in detecting MC clusters 

We also evaluated the performance of the proposed 

approach in detection of MC clusters from mammograms. 

For this purpose, we used the remaining 167 test images.  

To evaluate the detection performance, we conducted a 

cluster-based FROC analysis on the accuracy of the 

detected MC clusters (rather than individual MCs) in the 

mammograms. In this analysis, the FROC curve is a plot of 

the TP rate of detected MC clusters versus the average 

number FP clusters per image.  

To accommodate the variations associated with case 

selection and facilitate statistical comparisons, we applied a 

bootstrapping procedure in the (MC-based or clustered-

based) FROC analysis [20]. In our experiments a total of 

20,000 bootstrap samples were used, based on which the 

partial area under the FROC curve (pAUC) was obtained. 

3.3  Methods for comparison 

We considered the following MC detection methods in the 

experiments: 1) proposed context-sensitive DNN detector, 2) 

unified SVM detector [3], 3) CNN cluster detector [10], and 

4) a local DNN detector, formed by the local subnetwork in 

Fig. 3, which is used to demonstrate the benefit of additional 

context learning in MC detection.  

3.4 Results  

3.4.1 Detecting individual MCs in image regions 

In Fig. 4 we show the MC-based FROC curve obtained by 

the proposed context-sensitive DNN classifier in detecting 

individual MCs on the set of test mammogram regions. For 

comparison, results are also given for the Unified SVM 

detector. The FROC curve of the DNN is notably higher 

(better detection performance). A statistical comparison 

between the two yielded a difference of 1.15 in pAUC (p-

value<10-4) for FP rate over the range of [0, 10] FPs/cm2.  

Moreover, in Fig. 4 we also show the results obtained by 

the local DNN. As can be seen, the FROC curve of the local 

DNN is much lower compared to the context-sensitive DNN 

(difference in pAUC = 1.26; p-value<10-4). These results 

clearly indicate the benefit of context learning for improving 

the detection accuracy of individual MCs. 

3.4.2 Detecting MC clusters in mammograms 

In Fig. 5 we show the cluster-based FROC curves obtained 

by the proposed DNN and the Unified SVM in detection of 

MC clusters in mammograms. The FROC curve is higher for 

the DNN classifier; a statistical comparison between the two 

yielded a difference of 0.10 in pAUC (p-value=0.006) for 

FP rate over the range of [0, 2] clusters/image.  

For comparison, we also show in Fig. 5 the results 

obtained by the CNN cluster detector in [10] and the local 

DNN classifier. As can be seen, the local DNN yielded a 

much lower FROC curve than the context-sensitive DNN 

(difference in pAUC=0.15; p-value < 0.0001). Interestingly, 

the FROC curve of the CNN detector is noted to be very 

close to the context-sensitive DNN (difference in pAUC = 

0.0032; p-value = 0.4699).  

The FROC results of the local DNN detector clearly 

indicate the vulnerability in detection due to FPs caused by 

local image patterns resembling MCs. As noted in the 

introduction, the CNN cluster detector was designed to 

directly detect MC clusters in mammograms without 

specifically identifying the locations of individual MCs. 

Interestingly, by utilizing both local image features and 
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global context information, the proposed DNN detector 

could significantly improve the accuracy in detecting 

individual MCs while without sacrificing the accuracy in 

detecting MC clusters achieved by the CNN detector. 

4. CONCLUSION 

We developed a context-sensitive DNN classifier for 

detecting clustered MCs in mammograms. It consists of two 

subnetworks, one for extracting the local image features of 

an MC object, and the other for characterizing its 

surrounding background. We evaluated the proposed 

detector using FROC analysis on a set of 292 screen-film 

and full-field digital mammogram images. The results 

indicate that incorporating image context information in MC 

detection can significantly improve the accuracy in detecting 

individual MCs.        

 
Fig. 1 Left: Example ROI (200×200 pixels, 0.1 mm/pixel) 

containing clustered MCs; Right: Locations of individual MCs 

marked by red circles. 

 
Fig. 2 At a detection location, a small image window is used for 

characterizing the image features of an MC object, whereas a large 

image window is used for its surrounding tissue background. 
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Fig. 4 MC-based FROC curves obtained by different detectors in 

detecting individual MCs: 1) context-sensitive DNN (Context 

DNN), 2) Unified SVM, and 3) local DNN. 

 
Fig. 3 Illustration of the proposed context-sensitive DNN classifier 

architecture. It consists of two subnetworks, one for processing the 

large image context window (called global subnetwork), and one 

for processing the small MC image window (called local 

subnetwork). A batch normalization layer and a nonlinearity layer 

are included immediately after each Conv layer, but not shown in 

the figure for brevity. 
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Fig. 5 Cluster-based FROC curves obtained by different detectors 

in detecting MC clusters: 1) context-sensitive DNN (Context 

DNN), 2) Unified SVM, 3) local DNN, and 4) CNN cluster 

detector. 
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