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ABSTRACT

Magnetic resonance (MR) plays an important role in medical ima-
ging. It can be flexibly tuned towards different applications for deri-
ving a meaningful diagnosis. However, its long acquisition times and
flexible parametrization make it on the other hand prone to artifacts
which obscure the underlying image content or can be misinterpre-
ted as anatomy. Patient-induced motion artifacts are still one of the
major extrinsic factors which degrade image quality. In this work, an
automatic reference-free motion artifact detection, including locali-
zation and quantification, is proposed which can be used prospecti-
vely as quality control (e.g. scan adjustment) or retrospectively as
quality control (e.g. supported diagnosis). The detection is achieved
via trained convolutional neural networks (CNN). This study focuses
on investigating the optimal CNN architecture and required training
set composition to derive a general and robust network for MR mo-
tion artifact detection. In a volunteer cohort an average accuracy of
91% was achieved.

Index Terms— machine-learning, magnetic resonance imaging,
artifacts, neural networks, quality assessment

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a widely used imaging moda-
lity in today’s clinical diagnostic. It allows precise and non-invasive
assessment of anatomical structures as well as physiological and
functional processes. Besides various advantages, magnetic reso-
nance (MR) images are susceptible to artifacts originating from har-
dware imperfections, applied signal processing or patient variabili-
ties. Especially patient-induced motion artifacts are one of the major
extrinsic factors which can strongly degrade image quality. The ar-
tifacts manifest in the image as shifted and aliased structures along
the phase-encoding direction as well as blurring of the image con-
tent. Amongst these motion artifacts respiration in the body trunk
and head movement in neuroimaging are common and severe sour-
ces. These types of motion differ due to the occuring deformations:
respiration causes non-rigid displacements, i.e. structures change
size and shape while displaced, and head movement induces rigid
displacements, i.e. artifacts are shifted and rotated versions of origi-
nal structures.
In order to guarantee sufficient data quality, it is of importance to
detect and correctly classify causes of image deterioration as early
as possible. This enables to seize appropriate countermeasures: au-
tomatic sequence adaptation, prospective motion correction [1, 2, 3]
or motion-robust MR sequences allowing remarkable reduction of
motion-induced artifacts as well as retrospective motion correction
[4, 5, 6, 7] and learned correction mechanisms from the data itself

[8]. Routinely, images are inspected by a human MR specialist to
ensure an acceptable level of data quality. This manual process can
be very time-consuming and cost-intensive. Moreover, the quality
check is often performed after the patient has already left the facility
which may even demand an additional examination. In the context
of large epidemiological cohort studies such as UK Biobank [9] or
German National Cohort [10], the extent and complexity of acquired
data make a manual or visual analysis practically impossible.
Thus, in certain situations, when a human expert is not present, a mo-
tion correction procedure is not applicable/available or in the case of
large cohort studies, the potential presence of motion artifacts de-
mands an automatic processing for a prospective quality assurance
or retrospective quality assessment. In a prospective manner, a direct
feedback to the scanner about the derived image quality including
artifact level enables to optimize imaging protocols and provides a
guided scanner operation. A retrospective quality assessment ensu-
res correct image processing, post-processing or analysis and may
thereby even provide support in the diagnostic decision.
In previous studies, several approaches for automated analysis of
medical image quality have been proposed [11, 12, 13]. These met-
hods assess image quality relative to an available reference image of
optimal quality using difference metrics. These studies focused on
assessing quality depending on varying acquisition or reconstruction
conditions and are not explicitly considering image artifacts. First
reference-free methods were investigated for MR imaging of the
head. Mortamet et al. [14] described a simple approach for general
quality evaluation of brain MR images by analysis of the signal dis-
tribution in the image background. Woodard et al. [15] used image
features describing signal-to-noise ratio (SNR), image sharpness and
image homogeneity in order to establish an automated assessment
of image quality. The work of Tisdall and Atkins [16] compared an
automated model observer with human observers for the task of qua-
lity evaluation in low-SNR scenarios. Atkinson et al. [8] proposed
an auto-focusing metric which was further investigated by McGee et
al. [17]. The idea is to minimize in a reference-free setting the self-
dissimilarity of the image and by thus correcting motion-induced ar-
tifacts. However, none of the mentioned methods focused on motion
quantification and localization. Recently, Iglesias et al. [18] pro-
posed CNNs for the detection of motion artifacts in neuro-imaging
cases.
Thus, our study aims to provide a localized information about the
quantity of motion artifact burden. We proposed a machine-learning
scheme in terms of a convolutional neural network (CNN) to learn
the representation of motion artifacts [19, 20]. The initial study fo-
cused on investigations of motion artifacts in the head and abdo-
men from T1 weighted MR images. For each body region, separate
CNNs consisting of a fairly simple and shallow network architec-
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ture were trained on 2D image patches. In this work, we investigate
more advanced network architectures and propose a new CNN for
MR motion artifact quantification and localization in a whole-body
setting. The new CNN is trained on 3D image patches to capture
also through-slice motion artifacts. Moreover, the influences of body
region and T1/T2 contrast weighting are examined to propose a ge-
neral CNN architecture as well as the required composition of the
training dataset for a reliable prediction.

2. MOTION ARTIFACT DETECTION

This study proposes an automated reference-free quantification and
localization of motion artifacts in whole-body MR images. Motion
artifact manifestation differs according to: body region (head, abdo-
men, pelvis), type of motion artifacts (rigid and non-rigid), motion
origin (instructed and involuntary) and contrast weighting (T1 and
T2). The training database composition defines the identifyable ma-
nifestations of motion artifacts and thus needs to be carefully chosen.
After processing, a localized output with quantitative scale from 0 to
1 indicating none to high significance of motion artifact presence is
desired.

2.1. MR data acquisition

Data was acquired on a 3T PET/MR (Biograph mMR, Siemens He-
althineers) from 18 healthy volunteers (3 female, 25± 8 years). The
study was approved by the local ethics committee and all volunteers
gave written consent.
A T1 weighted axial 2D fast spin echo (FSE) sequence was acqui-
red in the head, abdomen and pelvis. A T2 weighted axial FSE was
acquired in the abdomen and pelvis. The head region was omitted
because of scan time and specific absorption rate limitations. The
acquisition parameters are depicted in Table 1. Field of view pla-
cement was fairly similar amongst volunteers with subject-specific
matrix size adaptation along phase-encoding direction. Each of the
five sequences was acquired twice for every volunteer, yielding in
total ten measurements per volunteer. During the first acquisition,
the volunteers were asked to hold their heads still for the head acqui-
sition and to lie still in the pelvic examination. In the abdominal
case, an end-expiratory breath-hold and navigator-triggering (gating
window size 5 mm) was conducted for the T1w and T2w FSE, re-
spectively. During the second acquisition, volunteers were instructed
to tilt their heads side-to-side for the head acquisition and to breathe
normally for the abdominal case. In the pelvic region, volunteers
were instructed to move around randomly during the whole acquisi-
tion.

2.2. Data preparation

Images were normalized into an intensity range of 0 to 1 and sub-
sequently partitioned into overlapping patches of size 40 × 40 ×
10 (anterior-posterior × left-right × superior-inferior; AP × LR ×
SI) with 50% overlap in each dimension. The resulting patches are
split into training and test set by leaving out one randomly selected
volunteer for testing. The labeling is simplified by deriving all la-
bels directly from the acquisition, i.e. all patches from the motion
data set are assumed to display motion. This results in 21168, 23250
and 24030 T1 weighted training patches in the head, abdomen and
pelvis, respectively and 46880 and 26340 T2 weighted training pa-
tches in the abdomen and pelvis, respectively. All patches are used
simultaneously for training to create a general motion artifact net-
work. The usage of image patches allows to spatially resolve motion
artifacts and enables a faster computation by the networks.

2.3. CNN architectures

The proposed method utilizes a multilayer CNN to return probabi-
lity values p ∈ [0, 1] for the presence of motion artifacts on an image
patch level. Three new architectures are proposed and investigated
in comparison to the previously published 2D-CNN [19]. The aim
is to propose a general and robust network for identifying motion
artifacts in 3D whole-body MR image patches.
The first architecture is based on the ideas of the 2D-CNN as pro-
posed in [19]. The network is depicted in Fig. 1(a) and is named
3D-CNN. It consists of three convolutional layers with each having
N filter kernels/channels of size M × L × B and a rectified linear
unit (ReLU) [21] activation function, followed by a fully-connected
layer with softmax decision. The filter kernels increase dyadically
to provide a multi-resolution approach from coarse to fine-grained
structures.

The second architecture is inspired by the MNet [22]. However,
the proposed MNetArt architecture as illustrated in Fig. 1(b) dif-
fers to the original MNet. The decoding branch (required for back-
projecting the segmentation results to image space) is omitted and
replaced by a dense layer. The 3D input patches are converted via
3D convolution with zero-padding to 2D patches which are mana-
ged internally. Each image slice is stored in a separate channel. This
enables a fast and efficient processing in a pseudo-3D way. The net-
work consists of four stages. Each of the first three stages has two
convolutional layers with N channels of size M ×L and parametric
ReLU (PReLU) [23] followed by a max-pooling layer. Between the
convolutions and stages a residual layer concatenates by element-
wise addition the convolved and unchanged input. This improves
convergence and forwards detailed structures to deeper levels. Di-
mensionality adjustment is achieved by zero-padding. In the final
stage, two convolutions and an intermittant residual layer is comple-
ted by a dense output layer with softmax decision.

Table 1. MR data acquisition parameters.

T1w FSE T2w FSE

body region head abdomen pelvis abdomen pelvis
matrix size 256 × 196 × 40 320 × 192-256 × 30 320 × 192-240 × 40 384 × 228-288 × 32 210 × 192-240 × 40
voxel size [mm3] 1 × 1 × 3 1.25 × 1.25 × 5 1.25 × 1.25 × 5 1.04 × 1.04 × 5 1.25 × 1.25 × 5
TE [ms] 8.4 10 11 100 86
TR [ms] 750 800 900 5800 4200
flip angle 140◦ 150◦ 160◦ 120◦ 150◦

bandwidth [Hz/px] 260 190 190 195 200
averages 2 2 2 2 2
phase-encoding direction left-right anterior-posterior anterior-posterior anterior-posterior anterior-posterior
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The third architecture is inspired by the VNet [24]. Again the
proposed VNetArt as illustrated in Fig. 1(c) differs in large parts
from its original version. Similar to MNet the decoding branch is
replaced by a dense decision layer. The 3D input patches are pro-
cessed in four stages. In each of the first three stages two convo-
lutional layers with N channels of size M × L × B and PReLU
activation function are followed by a concatenation layer and a final
max-pooling with stride. The concatenation layer acts as a residual
path between the stage’s input and its convolved version. The fourth
stage generates the probability output in a dense layer with softmax
activation.

For all architectures, filter kernel parameter ranges were esti-
mated by the Baum-Haussler rule [25] and coefficients were trai-
ned by optimizing the categorical cross-entropy function for a gi-
ven learning rate with `2 regularization and dropout ratio. The cost
function was minimized by an adaptive moment estimation (ADAM)
[26] with associated ADAM parameters β1 = 0.9, β2 = 0.999 and
ε = 10−8. Training was conducted for a maximal number of 200
epochs and with an early stopping criterion for a training loss update
less than 10−3 over the last three epochs. Coefficients were initi-
alized by a Gaussian distributed randomization. A grid search was
conducted to optimize learning rate, `2 regularization and dropout
ratios.

3. EXPERIMENTS

The focus lies on investigating the optimal architecture (2D-CNN,
3D-CNN, MNetArt, VNetArt) for varying body regions (head, abdo-
men, pelvis) with accompanied types of motion and contrast weig-
htings (T1, T2). In a first experiment all networks are trained on
the patches of the complete training database (a 40 × 40 × 1 pat-
ching was used for the 2D-CNN). Afterwards the impact of contrast
weighting is examined in a sense that the networks are only trained
on T1 weighted images and tested for T2 weighted images and vice
versa. In a final experiment the impact of body regions is investi-
gated by training on two body parts, e.g. head and abdomen, with
testing conducted on the remainder, e.g. pelvis, yielding three com-
binations. Evaluation is conducted via test accuracy, sensitivity (true
positive rate; TPR) and specificity (true negative rate; TNR). Stated
results reflect average values over all 3D patches and for a testing via
a leave-one-out cross-validation over all 18 subjects.

4. RESULTS AND DISCUSSION

Fig. 2 depicts an exemplary subject slice in the abdominal region
overlaid with the derived patch probabilities to illustrate the locali-
zation and quantification ability. The subject is only slightly moving
with aliasing occuring at liver, spleen and background. Whilst 2D-
CNN underestimates the motion, VNetArt tends to overestimate the
whole volume as motion. However, this arises from the volume-wise
instead of patch-wise labeling. This observation is in accordance
with the previously reported patch size dependency. It was observed
that larger patches (till whole volume) can better quantify motion
presence, but loose localization information. Smaller patches tend
to over- or underestimate motion regions as too less usable informa-
tion may be contained in one patch.
As illustrated by the results in Fig. 3, motion artifact detection is
feasible with a high accuracy of over 85%. The 3D motion detection
(3D-CNN, MNetArt, VNetArt) is thereby superior to the 2D case
(2D-CNN). The inclusiuon of residual pathways, i.e. forwarding fe-
ature maps from previous layers, as in MNetArt and VNetArt is even
superior than only using convolutions as in 3D-CNN. The pure 3D

(a) 3D-CNN

(b) MNetArt

(c) VNetArt

Fig. 1. Proposed CNN architectures for motion artifact detection.
3D image patches are processed to output an artifact probability p
on a per-patch level. Respective feature map sizes and channels are
stated for the examined input size of 40× 40× 10.
processing of the VNetArt performs better than the pseudo-3D pro-
cessing in MNetArt. Moreover, the larger dense output layer allows
a better quantification ability of the VNetArt. From the histograms
in Fig. 2, one can conclude the good differentiability, i.e. high spe-
cificity of the VNetArt. Sensitivity is mainly determined by the am-
plitude and strength of motion and is thus data-dependent.
Investigations on changing contrast weightings revealed better per-
formance than the complete training set. Comparing between the
influence of T1 and T2, a slightly better performance was achieved
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Fig. 2. T1 weighted abdominal MR image patches overlaid by color-coded artifact probability map p. The subject is breathing very shallow.
The histograms depict the estimated probability distributions.
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Fig. 3. Average test accuracy, sensitivity (TPR) and specificity (TNR) over all patches and over all cross-validation runs (wide bars) to
illustrate impact (a) from complete training set, (b) of contrast weighting (T1, T2) and (c) of body regions (head, abomden, pelvis). Standard
deviations are neglectable small.

if networks were trained on T1 weighted images and tested on T2
because of the bright adipose tissues in which motion artifacts can
be more easily identified. This allows to conclude that varying ima-
ging contrasts can be well dealt with by the networks. The impact of
body regions shows that metrics decrease if a certain kind of artifact
(rigid or non-rigid) is missed during training. If e.g. trained on head
(rigid, LR) and abdominal (non-rigid, AP) patches, rigid displace-
ments in the pelvic region along AP direction can be still acceptable
identified. However, the orientation of the motion artifact mainly
determines the performance. Data augmentation via rotated patches
may cope with this problem. Training database selection and com-
position mainly dominate at the moment the networks’ performance,
because of the limited amount of data which will be increased in fu-
ture studies. Amongst all networks, VNetArt provides highest sensi-
tivity and specificity for all experiments with the gained quantitative
ability paid at the price of loosing localization accuracy. This issue
will be resolved in future analysis by a patch-wise labeling.
Our study has limitations: The observed motion artifacts were exa-

mined in healthy volunteers which can differ in their appearance to
real patients. CNNs are trained on magnitude data (neglecting any
motion information in phase) because of their intended application
to cohort studies which only provide magnitude images. However,
further investigations considering the phase can be of interest.

5. CONCLUSION

Motion artifact detection including quantification and localization in
MR images is feasible with high sensitivity (0.85) and specificity
(0.91) in different body regions (head, abdomen, pelvis) and from
various imaging contrasts (T1, T2). The proposed VNetArt achieves
an accuracy of 91% and improves the performance of the previously
published network by 17% for a whole-body setting. The proposed
method is of potential interest for automated prospective image qua-
lity assurance or retrospective quality control. Once trained, these
networks have learned a representation of the artifacts and may also
serve as part of a correction scheme. This ensures a high data vali-
dity and by that reducing imaging costs.
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[19] T. Küstner, A. Liebgott, L. Mauch, P. Martirosian, F. Bamberg,
K. Nikolaou, B. Yang, F. Schick, and S. Gatidis, “Automated
reference-free detection of motion artifacts in magnetic reso-
nance images,” Magn. Reson. Mater. Phys., Biol. Med., Sep
2017.
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