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ABSTRACT
Medical datasets are often highly imbalanced with over-

representation of common medical problems and a paucity of
data from rare conditions. We propose simulation of pathol-
ogy in images to overcome the above limitations. Using chest
X-rays as a model medical image, we implement a generative
adversarial network (GAN) to create artificial images based
upon a modest sized labeled dataset. We employ a combi-
nation of real and artificial images to train a deep convolu-
tional neural network (DCNN) to detect pathology across five
classes of chest X-rays. Furthermore, we demonstrate that
augmenting the original imbalanced dataset with GAN gener-
ated images improves performance of chest pathology classi-
fication using the proposed DCNN in comparison to the same
DCNN trained with the original dataset alone. This improved
performance is largely attributed to balancing of the dataset
using GAN generated images, where image classes that are
lacking in example images are preferentially augmented.

Index Terms— Chest X-ray, data augmentation, deep
convolutional neural network (DCNN), generative adversar-
ial network (GAN), simulated images.

1. INTRODUCTION

In the medical domain, preservation of patient privacy is
paramount, and hence access to data is often intrinsically
limited to research groups [1], [2]. Medical datasets, similar
to financial [3] and genomics [4] datasets, are also very lim-
ited because they are often imbalanced [5]. Such imbalances
in datasets potentially make the training of neural networks
with equally high accuracy across classes technically chal-
lenging. Some medical problems are commonly encountered
in hospital settings which leads to a substantial amount of
data associated with them. However, rare conditions or syn-
dromes such as Birt-Hogg-Dube syndrome are expected to
have limited amounts of data in clinical databases [6].

The challenge of image availability across classes may be
partially met by data augmentation techniques, for example,
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applying transformations to images to augment the dataset.
The importance of balancing datasets is highlighted by the
fact that deep neural networks may be most valuable in the
work up of rare or challenging diseases, which practitioners
at a common skill level may fail to recognize or misinter-
pret [7]. Generative adversarial networks (GANs) have shown
to effectively generate artificial data indiscernible from their
real counterparts [8]. Some examples are statistical paramet-
ric speech synthesis [9], learning representations of emotional
speech [10], noise reduction in low-dose computed tomogra-
phy (CT) [11], and retinal image synthesis [12].

We propose the simulation of medical pathology in im-
ages as a means of augmenting data in a controlled fashion.
Simulated data can be used to increase the number of images
available and hence provide a means to balance datasets for
the training of deep neural networks. An ideal data simulation
scheme would be capable of generating an arbitrary number
of synthetic images, which mimic the features of real images
in any given class with sufficient diversity for the successful
training of a deep network. In this manuscript, we propose
the use of a deep convolutional generative adversarial network
(DCGAN) for the generation of chest X-rays that mimic com-
mon chest pathologies. The synthetic images are used to bal-
ance and augment a labeled set of chest X-rays for the training
of the proposed deep convolutional neural network (DCNN)
across five pathological classes.

2. PROPOSED METHOD

We propose a DCGAN tailored for training with chest X-
rays as in Figure 1. The generated artificial chest X-rays
are concatenated with the real X-rays to balance and expand
the training dataset to train the proposed DCNN. This DCNN
performs chest pathology classification as is demonstrated in
Figure 2. These models are discussed in details below.

2.1. Generating Chest X-Rays

GANs are composed of two neural networks, a Generator G
and a Discriminator D, which compete with each other over
the available training data to improve their performance. The
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Fig. 1: Architecture of the DCGAN and training it with real chest
X-rays.

DCGAN generates chest X-rays using DCNNs for both theG
and D components of the model [13].

The trained G, models the underlying probability distri-
bution pg of the training data for the set of exported chest
X-rays x and proposes artificial mappings G(z, θg) from the
prior input noise variable pz(z), where θg is the set of learn-
ing parameters of the DCNN in the Generator. As demon-
strated in Figure 1, a 128 dimensional vector z such that
zi ∼ uniform(−1, 1) is projected to a spatially extended
convolutional representation with 1,024 feature maps. Since
chest X-rays contain subtle features, high resolution images
are mostly of interest for machine learning purposes in med-
ical imaging. Therefore, a series of six fractionally-strided
convolutions (instead of four convolutions [13]) convert the
projected and reshaped noise vector z into a 256 × 256 pixel
chest X-ray x̂.

The Discriminator network D(x, θd) receives a generated
image x̂ or a real chest X-ray x and after passing that through
six convolution layers, as presented in Figure 1, produces an
output ô, stating whether the input image is real or synthe-
sized such that

ŷ =
1

1 + e−ô
s.t. ŷ ∈ [0, 1] (1)

where ŷ → 0 and ŷ → 1 state that the input chest X-ray is
synthesized or real, respectively. The Generator network G
trains so as to propose artificial images that the Discriminator
network D(x) cannot distinguish from real images. The ad-
versarial competition between G and D can be represented as
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Fig. 2: Architecture of the DCNN and its training with real and gen-
erated chest X-rays from DCGAN to classify abnormalities.

min
G

max
D
L(D,G) =

E
x∼pdata

(x)[logD(x)] + E
z∼pz(z)

[log(1−D(G(z)))]

(2)
where the Discriminator maximizes the loss value L(D,G)
while the Generator tries to minimize it. To train D, G works
in a feed forward fashion without back propagation, and vice
versa to train G [14].

2.2. Classification of Chest X-Rays

The trained Generator of the discussed DCGAN is used to
generate artificial chest X-rays as demonstrated in Figure 2.
The shuffled concatenation of real and synthesized chest X-
rays is then fed into the proposed DCNN for detection and
classification of pathology in chest X-rays.

AlexNet is a successful DCNN architecture that is com-
posed of five convolutional layers for feature extraction fol-
lowed by three fully-connected layers for classification [15].
The proposed DCNN for chest pathology classification in this
paper is fundamentally similar to AlexNet, however, uses dif-
ferent kernel sizes, feature map sizes, and convolution layers
as illustrated in Figure 2. For an input chest X-ray x256×256,
a convolution kernel of size 5 × 5 performs the convolution
operation to generate the feature map m as

h(m)
u,v = σ(

4∑
i=0

4∑
j=0

xi,j · w(m)
i,j + b(m)

u,v ), (3)

for u ∈ {0, ..., 255} and v ∈ {0, ..., 255}, where σ(·) is the
rectified linear unit (ReLU) activation function, b(m) is the
bias vector, and w(m) is the weight matrix. The ReLU is
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Fig. 3: Samples of real (R) and synthesized (S) chest X-rays: (a) Pulmonary Edema-R; (b) Pulmonary Edema-S; (c) Normal-R; (d) Normal-S;
(e) Pneumothorax-R; (f) Pneumothorax-S; (g) Cardiomegaly-R; (h) Cardiomegaly-S; (i) Pleural Effusion-R; (j) Pleural Effusion-S. The white
arrow points to the pathologic condition.

defined as f(x) = max(0, x), which takes advantage of its
non-saturating and non-linear properties as well as the ten-
dency to enable more efficient learning than tanh or sigmoid
activation functions [15]. A max-pooling layer after the con-
volution layer down-samples the latent representation by a
constant factor, usually taking the maximum value over non-
overlapping sub-regions such as

Oi,j = max{h(m)
q,r }, (4)

for q, r ∈ {(2i, 2j), (2i+1, 2j), (2i, 2j+1), (2i+1, 2j+1)},
where the max-pooling kernel is a square with side length of
L = 2. This operation helps to obtain translation-invariant
representations. The max-pooled features, after the multiple
convolutional and max-pooling layers, are reshaped as a vec-
tor, f, and are fed to a multi-layer perceptron (MLP) network
with one hidden layer as illustrated in Figure 2. The output
layer of MLP for the input vector f is

yc = φ(

|f|−1∑
j=0

fj · wj,c + bc) (5)

where |f| = 4, 096 is the length of vector f and w is the weight
of connections between the layers containing f and the output
layer y. The softmax function φ(·) assigns a probability to
each output unit, which corresponds to each class c, such as

φ(hc) =
ehc∑P
j=1 e

hj

(6)

where c ∈ {Pneumothorax, Pulmonary Edema, Pleural Ef-
fusion, Normal, Cardiomegaly}, hc is the input to the output
layer, and C = 5 is the number of chest X-ray classes [16].

3. EXPERIMENTS

We discuss the details of implementation and our obtained
results in this section.

3.1. Data

With the approval from our institutional ethics review board,
search of our hospital’s Radiology Information System (RIS)
was undertaken using the Montage Search and Analytics en-
gine. The dataset contained 15,781 Normal exams, 17,098
examples of Cardiomegaly, 14,510 Pleural Effusions, 5,018
examples of Pulmonary Edema, and 4,013 examples of Pneu-
mothorax. These images were exported and anonymized as

PNG files after down-sampling to 256×256 pixels to have
a balance between preserving resolution and computational
complexity (i.e. number of free parameters) of the models.
For all the experiments, 1,000 real chest X-rays with equal
contribution from each class are selected for validation and
the same number for testing of the model.

3.2. Technical Details of Training

A team of radiologists removed inappropriate generated chest
X-rays from the respective class directories and in order to
keep the training dataset balanced across different classes, the
DCGAN was trained with a dataset of 2,000 chest X-rays per
class. The parameters of the models were as follows: the
mini-batch size was 64, the number of training iterations was
20, an Adam optimizer was implemented with adaptive learn-
ing rate, starting between 2×10−4 and 2×10−3 depending on
the dataset size, and momentum of 0.5. The proposed DCNN
for pathology classification was trained over 100 iterations
using a mini-batch size of 128, an Adam optimizer with sig-
moid decay adaptive learning rate starting at 1 × 10−3 and
a momentum term of 0.5. The weights of the convolutional
layers were selected using a normal distribution and biases of
0.1. The ReLU activation functions were implemented before
the max-pooling layers. L2 regularization was set to 1×10−4

with early-stopping. Cross validation was performed 10 times
prior to reporting results.

3.3. Performance Evaluation

Generated images were evaluated by qualitative and quantita-
tive means. First, a board certified radiologist reviewed the
images for features appropriate to the five defined classes.
Second, the proportion of real and artificial chest X-rays were
varied to create concatenated datasets and the results of the
trained DCNN model were assessed on the test data.

3.3.1. Qualitative Evaluation by a Radiologist

Real and artificial images were presented to a radiologist as
shown in Figure 3 and were visually examined. The artificial
and real chest X-rays show similar characteristics, though the
synthetic ones are of comparatively low resolution. For ex-
ample in Figure 3 we demonstrate increased attenuation of
the lung parenchyma in an example of pulmonary edema, a
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tal number of chest X-rays per label in the balanced dataset is the
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pleural line in the case of pneumothorax, an enlarged car-
diac silhouette in the case of cardiomegaly, as well as bilateral
pleural effusions. The generated images convincingly demon-
strate the range of pathology under examination and can be
classified for the training of a deep neural network.

3.3.2. Chest Pathology with DCGAN Generated X-Rays

Deep neural networks trained with a combination of real and
artificial data have potential advantage over networks trained
with real data alone, including a larger quantity of data as well
as a better diversified dataset. Our original hospital dataset of
chest X-rays, like many clinical datasets, is highly imbalanced
and dominated by normal cases and common clinical condi-
tions. Rare conditions by virtue of their low prevalence are
underrepresented in such datasets.

We trained the proposed DCNN using a real imbalanced
dataset (DS1), real balanced dataset (DS2), and augmented
dataset with DCGAN synthesized chest X-rays to balance the
imbalanced real dataset (DS3). As Figure 4 shows, each im-
age class in the balanced dataset had 30,196 samples, which
was twice the maximum number of available samples in the
real imbalanced dataset (i.e. for Cardiomegaly). The accuracy
of predictions for the DCNN is presented in Table 1. The aug-
mented dataset DS3 outperforms the original dataset across
all classes. A mean classification accuracy of 92.10% was
achieved using the proposed method, where data was aug-
mented by DCGAN generated images to train the proposed
DCNN. This performance is more than 20% higher than that
obtained by the same DCNN architecture trained only by the
original data. The greatest performance improvement was
seen in the pneumothorax class, which was the class with the
fewest native images.

Accuracy and standard deviation of the proposed DCNN
on the validation dataset for training iterations over DS1,

Table 1: Classification accuracy of the DCNN is improved by bal-
ancing the original dataset with DCGAN generated chest X-rays.
DS1: Imbalanced dataset of real radiographs; DS2: Balanced dataset
of real X-rays; DS3: Balanced dataset of real images with synthe-
sized X-rays.

Accuracy (%) DS1 DS2 DS3

Cardiomegaly 79.15 71.73 95.31
Normal 77.75 72.53 95.02

Pleural Effusion 73.64 51.23 91.19
Pulmonary Edema 65.86 50.12 89.68

Pneumothorax 57.99 48.92 88.84
Total 70.87±0.47 58.90±0.48 92.10±0.41
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of the DCNN on the validation dataset during training iterations over
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DS2, and DS3 datasets are presented in Figure 5. The DCNN
trained with DS3 has achieved higher accuracy comparing
with the DS1 and DS2. The plot show that the DCNN trained
on DS3 has almost converged after 90 iterations. The same
DCNN trained on DS1 and DS2 is overfitted after 22 and 31
iterations, respectively, to a lower accuracy. The plot clearly
shows effectiveness of the added diversity to the dataset by
the generated chest X-rays using the DCGAN, which helps to
improve generalization performance of the DCNN for chest
pathology classification in X-rays and avoid over-fitting.

4. CONCLUSION

In this paper, we have shown that artificial data generated by
DCGAN can augment real datasets to provide both a greater
quantity of data for training of large neural networks and can
balance the dataset, resulting in substantial improvement in
classification performance in the most anemic classes. We
obtained best results with a combination of real and artificial
data used to train the DCNN. The reported results in this pa-
per suggest that data augmentation using synthesized images
increases the diversity of training dataset and therefore, im-
proves generalization performance of deep learning for clas-
sification of unseen data.
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