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ABSTRACT
Recent work on resting-state functional magnetic reso-
nance imaging (rs-fMRI) suggests that functional connec-
tivity (FC) is dynamic. A variety of machine learning and
signal processing tools have been applied to the study of
dynamic functional connectivity networks (dFCNs) of the
brain, by identifying a small number of network states
that describe the dynamics of connectivity during rest.
Recently, deep learning (DL) methods have been applied
to neuroimaging data for learning generative models. In
this paper, we employ the restricted Boltzmann machine
(RBM), to learn FC states from resting-state dFCNs. Un-
like previous applications of DL to neuroimaging data
that focus on feature extraction based on the voxel level
activation data, the current work employs RBM to learn
connectivity patterns, where the input to RBMs are a
collection of windowed covariances across time and sub-
jects. The extracted FC states are evaluated based on
their occurrence rate as well as modularity.

Index Terms— rs-fMRI, dFCN, RBM, functional con-
nectivity states

1. INTRODUCTION

Assessment of functional connectivity from resting-state
fMRI has contributed significantly to the understanding of
functional integration and segregation of the brain. Correla-
tions between intrinsic low-frequency oscillations have led to
the identification of a number of intrinsic connectivity net-
works such as the default-mode network, ventral and dorsal
attention networks and salience network [1]. Until recently
most studies of FC has been limited by an assumption of
spatial and temporal stationarity throughout the scan. Recent
studies have demonstrated that dynamics of FC are prominent
during resting state [2]. Understanding the time-varying na-
ture of FC provides new understanding of the FC differences
found in neuropsychiatric diseases.

In recent years, multiple data-driven and model-based ap-
proaches have been developed to assess FC dynamics such as
independent component analysis (ICA), principal component

analysis (PCA) [3], tensor decomposition along with cluster-
ing methods such as k-means [4, 5]. These methods learn
connectivity patterns directly from data, decompose multi-
subject resting state data into functionally homogenous net-
works (FC network states), and capture inter-subject variabil-
ity.

In this paper, we propose a deep learning inspired ap-
proach to extract these concise connectivity patterns from
dFCNs of the brain across time and subjects. In particular,
we propose a restricted Boltzmann machine (RBM) network
architecture to learn the network states from input variables
that correspond to windowed covariance matrices. RBMs
have been previously used in the context of neuroimaging for
identifying intrinsic networks (IN) and have been compared
to ICA in terms of the INs extracted [6–8]. Previous work has
shown that the RBM structure is similar to a matrix factor-
ization, where the weights of the mixing matrix are directly
learned from the data. In this setting, each visible variable
corresponds to a single voxel and each hidden variable cor-
responds to an IN or latent factor. Unlike prior work, in this
paper we develop a RBM based framework to learn FC states
rather than INs. Therefore, in our setting each visible variable
corresponds to a pair of FC values across time and subjects,
where the FC values are computed using a sliding window
approach with the connectivity matrix estimated as the in-
verse of the precision matrix obtained from graphical LASSO
(glasso). The hidden units in this case are the FC states and
the weights refer to the mapping between the observed con-
nectivity networks and a given state. The current work also
differs from prior work on FC extraction in that the network
states are directly learned from connectivity without any prior
assumptions about the number of states or the nature of the
dynamics unlike in [5, 9]

2. BACKGROUND

2.1. Graphical LASSO

When the number of variables is larger than the number of
samples, the estimation of an accurate and stable covariance
matrix is difficult, as it may become rank-deficient, i.e. sin-
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gular. For this reason, penalized likelihood methods are used
for estimating a sparse precision matrix, i.e. the inverse of
covariance matrix. A commonly used method is Graphical
LASSO [10] which proposes a fast solution for this problem
with L1-penalty forcing the relation between conditionally in-
dependent regions to be zero for a sparser undirected graphi-
cal model.

Let Θ and S be the precision and sample covariance ma-
trices of the data, respectively. For a fixed penalty ρ, the prob-
lem is to maximize the log-likelihood function given by:

`(Θ) = log det Θ− tr(SΘ)− ρ||Θ− diag(Θ)||1, (1)

where tr is the trace operator and ||.||1 is the absolute sum of
the matrix elements. In order to prevent underfitting, the op-
timum value of the regularization parameter ρ is determined
by cross-validation.

2.2. Restricted Boltzmann Machine

A Boltzmann machine [11] is an energy-based model with
known visible variables vvv and unknown hidden variables hhh,
representing a stochastic undirectional graphical model, also
known as Markov random field. Due to the computational
complexity resulting from the large number of connectivities,
the topology is ’restricted’ where linking between same sorts
is not allowed.

The goal of DL is to find the parameter set θ = {W,aaa,bbb}
describing the stochastic model for the data, where W repre-
sents the symmetric visible-hidden interactions, aaa and bbb cor-
respond to the biases for the visible and hidden units, respec-
tively. The negative log-likelihood of the joint probability dis-
tribution of hidden and visible variables, given by:

log(p(xn)) = log(
∑
h

e−E(xn,hhh))− log(Z) (2)

is minimized for each data point xn with normalizing fac-
tor Z and the energy function E(vvv,hhh) defined as, E(vvv,hhh) =
−vvvTWhhh− aaaTvvv − bbbThhh.

In order to apply stochastic gradient descent algorithm,
the model distribution must be known beforehand. For this
purpose, Monte Carlo approximation is helpful to estimate
the distribution from a limited number of samples.

3. METHODS

3.1. Dynamic Functional Connectivity Networks

Most work on constructing dynamic functional connectivity
networks relies on sliding window correlation [9], [12]. In
this approach, for each subject s = 1, . . . , S, each time-series
xr(t) from a ROI r = 1, . . . , R is windowed with a tapering
window, resulting in xr(tw) and the connectivity is calculated
as the correlation within each window w = 1, . . . ,W , i.e.
dFCN(s, w, r1, r2) = corr(xr1(tw), xr2(tw)) .

Due to the short-length of the window compared to the
number of ROIs, the resulting covariance estimate is biased.
In order to address this problem, we propose to use glasso to
estimate sparse precision matrices of windowed covariances.
To determine the regularization parameter ρ, for a sequence
of ρ’s (preferably, between 0.001 and the largest off-diagonal
value of windows’ sample covariances), `sw(Θρ,w) given in
equation (1) is calculated in a cross-validation framework,
where Θρ,w is the precision matrix of a randomly selected
window estimated from gLASSO for each ρ and S is the
sample covariance computed from the remaining signal. This
process is repeated for all the windows of a given subject s,
consequently the optimum ρopt is determined as the one max-
imizing the mean of these log-likelihood values `sw. Finally,
the covariance for each window is estimated as the inverse of
the precision matrices resulting from gLASSO with ρopt.

The estimated covariance matrices are then Fisher trans-
formed to stabilize the variance across all connectivities with
the same correlation. In conclusion, dynamic FC of rs-fMRI
is constructed as an array dFCN ∈ RS×W×R×R.

3.2. Gaussian-Bernoulli RBM

To extract ’FC states’, defined in [9] as patterns of consis-
tent FC across time and subjects, restricted Boltzmann ma-
chines with different number of hidden units are evaluated.
The number of units nHid represents the number of assumed
FC states at resting-state. First, the upper triangular part of
the connectivity matrix within each window is vectorized to a
vector of length

(
R
2

)
. These vectors are then cascaded to form

the matrix P ∈ RS·W×(R
2). These time-varying connectivity

vectors form the input layer of RBM (similar to [6].).
Since the conventional RBM, which is also called BB-

RBM (Bernoulli-Bernoulli RBM) requires the input to be a
binary variable, we use the Gaussian-Bernoulli RBM (GB-
RBM) to deal with real-valued data as the input to its visible
units [13]. Each column of the connectivity matrix P corre-
sponds to the connectivities of a pair of ROIs varying with
time. For computational efficiency, the input is assumed to be
sampled from a zero-mean, unity-variance Gaussian distribu-
tion. In order to obtain a N (0, 1) distribution, we normalize
each column of the matrix P , which corresponds to each pair.
With the assumption that visible unit vi is a sample from a
Gaussian distribution centered around ai with std σi, the en-
ergy function E(vvv,hhh) of GB-RBM is given by:

E(vvv,hhh) = −
∑
i,j

vi
σi
Wijhj−

∑
i

(ai − vi)2

σ2
i

−
∑
j

bjhj . (3)

The difference of GB-RBM from BB-RBM is that [14] the
sampling of the visible unit from the hidden unit is done by
using a Gaussian distribution;

p(vi = v|hhh) = N (vvv|ai +
∑
j

wij , σ
2
i ). (4)
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During gradient update weights are divided by the variance,
which does not have any impact on the result, since the vari-
ance σ2

i is initially assumed to be 1. In order to generate posi-
tive and negative weights, hyperbolic tangent function is used
for the activation of hidden units.

Once the feature vectors of length
(
R
2

)
are extracted from

RBM, they are converted into adjacency matrices correspond-
ing to FC networks of nHid states. FC matrices of all win-
dows and across all subjects are clustered into one of these
states, using the Manhattan distance function. Percentage of
occurrences, which is the ratio of the number of times a partic-
ular state occurs to the total number of windows, is calculated
for each state of an RBM result with fixed nHid.

4. RESULTS

4.1. Data and preprocessing

In this paper, we study the Bangor rs-fMRI dataset from the
1000 Functional Connectomes Project [15]. BOLD responses
from 20 healthy subjects (males, ages 19-38) were collected
with a 3T scanner while the subjects were at rest with their
eyes open. A total of 34 slices were acquired at a TR of 2s,
resulting in 265 time points. All pre-processing was carried
with CONN toolbox [16]. As part of the pre-processing, im-
ages were spatially normalized to MNI space and corrected
for slice timing and motion, and spatial convolution with 8-
mm FWHM Gaussian kernel. Regions of interest (ROIs) were
obtained with the automated anatomical labeling (AAL) atlas,
resulting inR = 90 ROIs. Finally, time series were band-pass
filtered between 0.008-0.09 Hz. Regional time-series signals
were computed by averaging BOLD signals of all the voxels
within each region. Finally, these average time series signals
have been z-scored, minimizing possible bias in subsequent
variance-based data reduction steps.

4.2. Optimal dynamic FCNs

Once the time-series for all the ROIs are obtained, they are
windowed with a tapered window which is created by con-
volving a rectangular window (width = 22TRs) with a Gaus-
sian with σ = 3TRs. This window is slid in steps of 1TR
along time, resulting in W = 233 windows for each subject.
The covariance matrices of these windowed signals are com-
puted by gLASSO after the optimal regularization parameter
ρopt is determined through cross-validation for each subject
separately. ρopt was found to be between 0.033 and 0.068
with a mean of 0.05 and a standard deviation of 0.012 across
all subjects.

4.3. RBM results

The vectorized dFCNs after Fisher transformation are the in-
put of RBM, resulting in ’FC states’ as features. RBMs [17]
were constructed with

(
90
2

)
= 4005 Gaussian visible units,

(a)

(b) (c)

Fig. 1. Analysis to determine the L1-parameter and nHid: (a) The
ratio of the maximum weight for each feature to the overall maxi-
mum weight is plotted with respect to the feature index for RBMs
with different nHid; (b) Variance of occurrences with respect to
the number of hidden units and for different L1-parameters; (c) His-
togram of the weights of different states from RBMs with nHid = 6
and varying weight decay rate.

corresponding to each pair of ROIs and one hidden layer with
varying nHid, ranging from 2 to 32. We searched in this
range, since previous work on dFCNs found 8-10 consistent
FC states across subjects and time. The learning rate was
fixed at 0.001, which is the scaling factor of the gradient up-
date at each ’epoch’. As the simplest version, contrastive di-
vergence with 1 step of chain was preferred for the alternat-
ing Gibbs sampling. For full convergence of the parameters,
RBMs were trained during 100 epochs with a minibatch size
of 5.

To find the optimum weight decay rate, histogram of the
weights for all the state networks after applying RBM with
varying L1 ∈ [0.02 : 0.125] was analyzed. As observed
in Fig.1(c), there is not any significant change to the spar-
sity of the weights after weight decay rate of 0.075 (repre-
sented in yellow). To determine nHid, the ratio of maxi-
mum absolute weight of each feature to the maximum ab-
solute weight overall was computed for RBMs trained with
varying nHid. In Fig.1(a), each line represents an RBM with
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different nHid and the ratios are sorted in descending order.
This ratio drops off significantly around 6 hidden units, indi-
cating that increasing the number of features after 6 will not
result in a significant change in representing the data. More-
over, if L1-norm of each feature were to be plotted in descend-
ing order, it would also show a decay after the 6th feature.
Fig.1(b) shows the variance of occurrences for RBMs with
nHid = 2 : 16. As the variance of occurrences decreases,
the percentage of occurrences is more uniformly distributed
across the hidden units. Fig.1(b) shows this variance stabi-
lizes after 6 hidden units, consistent with the results presented
above.

4.4. FC states

Fig.3 illustrates the FC states extracted using RBM with 6
hidden units and a weight decay regularization parameter of
0.075. States are ordered based on their corresponding oc-
currence percentages (range 11.5-21.8% with mean and de-
viation 16.7%±3.3%.). The observed functional connectivity
states are evaluated with respect to the well-known resting-
state networks including AN (auditory network), SMN (so-
matomotor network), SCN (subcortical network), VN (visual
network), CCN (cognitive control network), DMN (default
mode network) and BiN (bilateral limbic network) [18].

In State1 and State3, DMN is the dominant network and
is anti-correlated with sensorimotor regions AN, VN and
SMN as well as within itself. At State1, some frontal re-
gions of CCN, are included to form an expanding module
with DMN. These dynamic and anti-correlated networks are
consistent with previous literature [19]. State2 illustrates the
anti-correlation of CCN with the rest of the network, and
a module consisting of CCN with SMN, AN and SCN. In
State5 and State6, the correlations of sensorimotor regions
with each other are salient, where as the subnetworks AN and
SMN are highly connected in State5. State4 summarizes the
connectivity of VN within itself as well as the interactions
with cognitive regions of the brain.

In the first three states, as most of the connectivity values
are negative, resulting in a large negative modularity value.
Moreover, the number of optimal modules is n = 2 for the
first 4 states, indicating that each state is a representation of
two distinct pairs of subnetworks. Fig.2 shows the state tran-
sitions as a function of time for two subjects, which have sim-
ilar patterns. FC stays at State1 for long periods, and the dura-
tion of other states, especially State6, are shorter. Clearly, this
is observed through the occurrence percentage of each state.

5. CONCLUSION

In this article, we examined FC states of rs-fMRI scans by
extracting them as features of dFCN using a restricted Boltz-
mann machine. The obtained states summarize the domi-
nant interactions between and within functional subnetworks.

DMN is found to be as one of the prominent subnetworks dur-
ing resting state similar to previous work in [18, 19]. Further-
more, sensorimotor regions are highly connected, due to per-
petual sensing. FC states obtained by RBM are highly mod-
ular and representative of the patterns in dFCN. In terms of
future work, this research can be extended by using a deep
belief network.

Fig. 2. State transitions of Subject2 and Subject8.

Fig. 3. FC network states resulting from RBM with nHid = 6 and
weight decay L1-parameter 0.075. For each state, occurrence per-
centages, modularity index (Q) and the optimal number of modules
n calculated by Brain Connectivity Toolbox [20] are given.
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