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ABSTRACT
The presence of Epileptiform Transients (ET) in the elec-
troencephalogram (EEG) is a key finding in the medical
workup of a patient with suspected epilepsy. Automated
ET detection can increase the uniformity and speed of ET
detection. Current ET detection methods suffer from insuffi-
cient precision and high false positive rates. Since ETs occur
infrequently in the EEG of most patients, the majority of
recordings comprise background EEG waveforms. In this
work we establish a method to exclude as much background
data as possible from EEG recordings by applying a classifier
cascade. The remaining data can then be classified using
other ET detection methods. We compare a single Support
Vector Machine (SVM) to a cascade of SVMs for detecting
ETs. Our results show that the precision and false positive
rate improve significantly by incorporating a classifier cas-
cade before ET detection. Our method can help improve the
precision and false positive rate of an ET detection system.
At a fixed sensitivity, we were able to improve precision
by 6.78%; and at a fixed false positive rate, the sensitivity
improved by 2.83%.

Index Terms— Classifier cascade, classifier ensemble,
interictal spike detection, epilepsy, support vector machine

1. INTRODUCTION
The scalp EEG of a patient having epilepsy is typically char-
acterized by presence of occasional epileptiform transients
(ETs), including spikes with 20-70 ms and sharp waves with
70-200 ms duration. The presence of ETs predicts recurrence
of seizures following a first seizure [1, 2]. In addition, it sup-
ports the diagnosis of epilepsy [3]. However, it is challenging
to detect ETs because of the large variety of ET morpholo-
gies. ETs can also be similar to waves that are part of normal
background activity and to artifacts, such as extracerebral
potentials from muscle, eyes, heart, electrodes, etc. [4].

The gold standard for ET detection in clinical prac-
tice remains visual inspection, which is tedious and time-
consuming. The disagreement among EEG experts in an-
notating ETs is substantial [5–7]. Misinterpretation of the
EEG can lead to misdiagnosis of epilepsy and delay the
treatment of the correct underlying cause of the seizure-
like events [5, 8]. With all these underlining problems, we
are motivated to develop automated ET detection methods,

which increases uniformity in EEG annotation of patients
with epilepsy [4].

Many methods have been developed for automated ET
detection. These methods include mimetic analysis, tem-
plate matching, parametric methods, power spectral analysis,
artificial neural networks [4], and wavelet transforms [9].
Some methods have combined different techniques of clas-
sification as well as artifact removal methods [10–13]. For
instance, they have applied template matching combined with
clustering [10], template matching combined with support
vector machines (SVMs) and independent component anal-
ysis (ICA) [11], nonlinear energy operator combined with
mimetic analysis and Adaboost classifiers [12], and sequence
merging combined by SVMs [13], wavelet transform with
machine learning techniques [14, 15]. In a recent study [16],
the performance of an ET detection software on a dataset
consisting of 40 epileptic patients, was compared with ET
detection by three skilled technologists. They reported that
the algorithm is noninferior to human experts. However, the
common problem with these methods is the lack of a sizable
dataset consisting of different ET profiles to validate the per-
formance of the ET detection systems. Reliability for clinical
purposes has not been established. There are currently no
universally-accepted ET detection systems. Existing ET de-
tection systems either suffer from a low sensitivity [5, 17]; or
a low specificity [4, 5, 18, 19].

In this study, a large dataset consisting of 156 interictal
scalp EEG recordings is analyzed. We propose a new method
to aid in classifying the interictal EEG. Our method is based
on a classifier cascade, i.e., an ensemble of weak classifiers.
We establish our method to exclude as many background
EEG waveforms as possible from the EEG. Each weak classi-
fier is designed to have a high sensitivity to detect ETs while
allowing for modest or weak specificity. These classifiers are
applied in a cascade; the cascade can then be combined with
other ET detection algorithms to improve the performance.

2. METHODS
In clinical application of ET detection, there is limited toler-
ance for false alarms (or false positive rate), so that no healthy
subjects will be diagnosed as having epilepsy. On the other
hand, the true positive rate (sensitivity) does not need to be as
high, since even with slightly lower sensitivity we can still de-
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tect ETs in sufficiently long EEG recordings. The main objec-
tive in ET detection is to determine whether any ETs exist in
a patient’s EEG, and if so to find their channel locations [20].
Therefore, we aim to develop our algorithm to lower the false
positive rate and increase the precision. We consider a large
EEG dataset in contrast to several existing studies; and by ap-
plying cross-validation, we ensure the results generalize well.

2.1. EEG dataset
We consider recordings of 93 patients with epilepsy, and 63
subjects with non-epileptic EEG. The diagnosis was based on
the clinical read which was done independent of this study.
Average length of each EEG is 28.5 minutes. Most previous
studies have only used the EEG from patients with epilepsy
containing ETs. By contrast, we include spike-free EEGs for
both training and validation as well. This is beneficial since
we need the algorithm to perform well on all types of pa-
tients. The data was acquired at Massachusetts General Hos-
pital (MGH) using the 10-20 standard system of electrode
placement. The sampling frequency is 128Hz, and signal is
high-pass filtered at 1 Hz. Data is cross-annotated by two
trained clinical neurophysiologists using the NeuroBrowser
software [21]. Only the waveforms annotated by both experts
are considered as ETs. There are a total number of 18,164
ETs in the dataset, with 143 ETs per patient on average, and
minimum 1 and maximum 1987 ETs per patient. 5-fold cross-
validation was used to split the data into training and test sets.
We divided the EEG in segments of 0.5s, and casted the ET
detection as a binary classification problem for each segment.

2.2. Classifier cascade
We develop a model ensemble by considering different sin-
gle classification models. In ensemble learning, rather than
creating a single model, a set of models are produced and pre-
dictions are made by aggregating the outputs of these models.
A prediction model which consists of a set of models is called
a model ensemble. The motivation behind using ensemble
methods is the idea that a committee of experts working to-
gether on a problem are more likely to solve it successfully
than a single expert working alone [22].

In our method, we generate several classification models
having a high sensitivity. We compare these models in terms
of their specificity and select the best one in each step of the
algorithm. The training set shrinks at each step. The selected
classifiers at every step are applied on the dataset in the form
of a cascade. We employ the Support Vector Machine (SVM)
with Gaussian radial basis kernel as the basic unit of the clas-
sification cascade [22]. Our hypothesis is that by sequentially
eliminating background waveforms using SVMs applied as
a cascade, while retaining possible ETs, we can increase the
precision and reduce the number of false positive detections
of an ET detection method.

2.3. Training phase
ETs are considered as 0.5s segments at the specific EEG time
and channel annotated by experts. All waveforms overlap-

ping in time with any ET, and 0.5s before and after any ET, on
all channels are eliminated from background candidates. We
first split data in 5 cross-validation folds. For each training
round, we sample one background waveform for each ET, so
that the training set is balanced. The average number of ETs
is 14,531 per fold. We train classifiers using each background
set (from each EEG in training set) and all ETs. For each
fold, the number of trained SVMs equals to the number of
training EEGs. Thus, around 124-125 SVMs for each fold,
and 624 SVMs over all folds are trained.

We then select one of the trained SVMs for the first stage,
as follows: All trained SVMs are first applied on the whole
training set, including all ETs and the sampled background
from all training subjects. Next, we adjust the threshold on the
output scores of the classifiers in such a way that sensitivity
is greater or equal to 0.999. The classifier having the highest
specificity is selected, and is applied on the whole training set.

Hence, all waveforms in the training set which are labeled
“non-ET” after applying the selected SVM are eliminated
from the dataset. In the next step, again all classifiers are
applied on the new training waveforms labeled “ET” in the
previous step, and the same procedure is repeated. The op-
timum number of steps can be determined based on desired
performance metrics.

One purpose for training several classifiers with different
training sets is to avoid unbalanced training. Since in inter-
ictal EEG, there are only few ETs typically, the training set
would be highly unbalanced if using one single classifier. In
our approach, each SVM is trained with a balanced input.

2.4. Testing phase
In the testing phase, we apply the classifier cascade to all
the EEG waveforms in the test set. In other words, in this
phase all ETs and background waveforms are considered. By
contrast, in the training phase, one background waveform is
randomly selected for each ET, leading to a balanced training
set. The test set contains an average of 3633 ETs per fold.

2.5. Combining the cascade with an ET detection method
We test a single SVM as benchmark and compare it to the
classifier cascade followed by the same SVM. In this way,
we can assess the benefits of the classifier cascade. The two
approaches for ET detection are illustrated in Fig. 1. We pro-
pose using the classifier cascade to improve the performance
compared to one single SVM.

Fig. 1: Two approaches for ET detection: (a) One single SVM
detector (b) An SVM cascade followed by one SVM detector.
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Table 1: Sensitivity of the classifier cascade after each step.
Stage Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

1 0.999 0.982 1 1 1 0.996
2 0.996 0.971 0.998 0.998 0.908 0.974
3 0.973 0.962 0.991 0.986 0.908 0.964
4 0.970 0.962 0.991 0.985 0.852 0.952
5 0.962 0.849 0.991 0.970 0.848 0.924
6 0.959 0.847 0.991 0.970 0.824 0.918
7 0.930 0.847 0.984 0.962 0.795 0.904
8 0.907 0.843 0.984 0.953 0.794 0.896
9 0.904 0.842 0.952 0.953 0.789 0.888

10 0.904 0.841 0.952 0.9487 0.771 0.883

Table 2: Specificity of the classifier cascade after each step.
Step Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

1 0.533 0.784 0.323 0.577 0.586 0.561
2 0.738 0.848 0.408 0.730 0.754 0.696
3 0.836 0.888 0.556 0.828 0.792 0.780
4 0.851 0.908 0.668 0.861 0.843 0.826
5 0.875 0.915 0.720 0.886 0.866 0.852
6 0.887 0.927 0.762 0.904 0.879 0.872
7 0.903 0.933 0.792 0.918 0.896 0.888
8 0.910 0.940 0.825 0.927 0.915 0.904
9 0.914 0.945 0.828 0.934 0.923 0.909
10 0.925 0.950 0.851 0.941 0.930 0.919

3. RESULTS AND DISCUSSION
• Classifier cascade
We determined the classifiers and the thresholds to be applied
on their output by keeping the sensitivity at 0.999 at every
stage. After learning the classifiers, we applied them on the
test set for every fold. The testing sensitivity and specificity
of the algorithm for all 5 folds as well as the average value
over all folds are listed in Table 1 and Table 2, respectively.
After 10 steps, we achieve specificity of 0.919 at sensitivity
of 0.883. The overall sensitivity decreases as we add more
steps, while the overall specificity is increased, as expected.
The choice of number of stages to be used depends on the
application.

The ratio of retained ETs (sensitivity) and excluded back-
ground waveforms (specificity) for individual subjects is il-
lustrated in Fig. 2. For the majority of subjects the sensitivity
and specificity values are high. However, for a few subjects
the algorithm has low performance. The subjects with low
sensitivity typically have very few number of ETs (l,4,14),
while one subject with sensitivity of 0.26 has 226 ETs.
• ET detection by SVM
We take 2 approaches for ET detection: (1) We train and test
an ET detection method using a single SVM; (2) We train and
test an SVM on the data retained from the classifier cascade,
considering a 4-step cascade which includes 4 SVMs.

We compute the sensitivity, precision, and false positive
rate (FPR) per minute of EEG recording. The results for
the overall algorithm are listed in Table 3. We compute and
compare the performance on parts of ROC where the overall

specificity of ET detection equals to 0.99, 0.999, and 0.9999.
We consider the high values of specificity, since we require
the overall specificity of the system to be very high in order
to control the false positives.

As shown in Table 3, sensitivity declines by applying the
classifier cascade to eliminate background EEG before apply-
ing the ET detection method. This is expected, since at every
stage of the cascade we lose a small portion of ETs. As men-
tioned earlier, we are more interested in high precision than
high sensitivity. Hence, we can compromise on sensitivity to
some extent. On the other hand, we observe that precision is
significantly improved, and false positive rate per minute is
reduced by adding steps to the cascade.

The precision versus sensitivity of the SVM detector,
with and without the cascade, is shown in Fig. 3. This figure
shows the precision versus sensitivity (recall) for the specific
values of specificity=0.99, 0.999, 0.9999 similar to the values
included in Table 3. The sensitivity versus false positive rate
per minute on a logarithmic scale (with base 10), correspond-
ing to each of the three mentioned specificity values, is shown
in Fig. 4.

From Fig. 3 we observe that the precision-recall curve for
ET detection with the classifier cascade is shifted upwards
compared to the case in which only a SVM detector is applied
to the whole dataset. This shift in the precision-recall curve
indicates that by including the cascade of classifiers as the first
step, we can achieve higher precision for the same sensitivity.
Fig. 4 shows that the false positive rate is significantly reduced
by including the cascade before applying SVM ET detector,
and by increasing the number of classifiers included in the
cascade.

According to Fig. 4, for a fixed false positive rate of
1.2 per minute (-0.081 in logarithmic scale), sensitivity is
increased from 39.70% to 42.53% which indicates a total
increase of 2.83% in sensitivity.
Fig. 3 shows that for a fixed sensitivity of 42.53%, precision
is increased from 59.38% to 66.16%, indicating a total in-
crease of 6.78% in precision.

Fig. 2: Sensitivity versus specificity for each subject after a
10-stage classifier cascade.
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Table 3: Overall performance of ET detection by applying SVM with and without the initial classifier cascade.

Method Specificity=0.99 Specificity=0.999 Specificity=0.9999

Sensitivity Precision FPR Sensitivity Precision FPR Sensitivity Precision FPR

SVM 0.806 0.078 42.76 0.577 0.369 4.289 0.325 0.715 0.432
1stage+SVM 0.803 0.088 43.041 0.602 0.405 4.277 0.347 0.739 0.430

2 stages+SVM 0.689 0.284 17.254 0.501 0.572 1.705 0.242 0.819 0.163
3 stage+SVM 0.673 0.281 9.823 0.472 0.615 1.232 0.218 0.842 0.116
4 stage+SVM 0.634 0.346 6.635 0.425 0.661 0.828 0.186 0.865 0.079

In summary, the results show that our method can success-
fully increase the precision and reduce the number of false
positive detections of an ET detection system. The classifier
cascade can be incorporated with any ET detection system as
an initial step.

Fig. 3: Precision versus sensitivity at certain specificity val-
ues, with and without the classifier cascade.

Fig. 4: False positive rate versus sensitivity at certain speci-
ficity values, with and without classifier cascade.

4. CONCLUSIONS
In this study, we propose a method to reject background EEG
activity from interictal EEG of patients with epilepsy by ap-
plying an ensemble of classifiers as a cascade. The purpose is

to improve the performance of ET detection systems in terms
of precision and false positive rate. We use a large dataset
consisting of 93 epileptic subjects as well as 63 subjects with
ET-free EEG.

In future work, we hope to apply this method on an even
larger dataset to provide more reliable performance. In ad-
dition, we will employ other classifiers as basic units of the
system, in order to increase the background rejection rate
and further improve precision and false positive rate. We
will consider various sizes for cascade as well, to pick the
optimum for our application. We will also investigate the
algorithm with more ET detection methods.

Furthermore, we will perform more analysis on individ-
ual subjects to determine why the algorithm does not perform
very well for certain patients. Understanding the character-
istics of the patients on which our algorithm fails to perform
well could give clues to tune the ET detection algorithms to
handle these difficult cases.

Finally, we plan to analyze ETs that are lost at the early
stages of the cascade. In this way, we can learn more about
morphologies of ETs that can easily be misinterpreted by ET
detection algorithms. We will also analyze the background
waveforms which are retained after the late stages of the al-
gorithm. These waveforms comprise difficult-to-reject false
positive detections; therefore, studying their morphologies
and trying to eliminate them could yield further reduction in
the false positive rate of ET detection methods in the future.

Our ultimate goal is to develop an efficient ET detec-
tion system for clinical applications. We plan to process the
waveforms that are retained after the cascade by using other
machine learning algorithms.
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