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ABSTRACT
Recently, much attention has been devoted to examining time-
varying changes in functional connectivity to understand the net-
work structure in the human brain. Most studies, however, analyze
the time-varying functional connectivity but ignore the time-varying
spatial information. In this paper, we propose a method based on
independent vector analysis (IVA) to study dynamic functional net-
work connectivity (dFNC) as well as dynamic spatial functional net-
work connectivity (dsFNC) in fMRI data. Though IVA allows one to
effectively capture both, its performance degrades with the increase
in the number of datasets. Hence, we propose an effective scheme to
bypass this limitation followed by graph theoretical analysis to study
both inter-network dynamics and intra-network stationarity. We ob-
serve higher dFNC fluctuations for patients with schizophrenia in
the default-mode (DM)-salience network and cerebellum with asso-
ciated connections. dsFNC analysis indicates higher inter-network
fluctuation in patients while DM, anterior DM and frontal networks
demonstrate significant intra-network fluctuation in controls.

Index Terms— Dynamic functional connectivity, dynamic spa-
tial connectivity, independent vector analysis, network stationarity,
temporal graphs

1. INTRODUCTION
The human brain comprises networks that are spatially distributed
but functionally associated, continuously interacting with each other.
Functional connectivity analysis explores the organization of tem-
poral dependency among these networks and provides a platform to
assess the dysfunction in this organization in many cognitive disor-
ders [1]. Studies related to the analysis of functional connectivity are
often limited due to an assumption of spatial and temporal station-
arity over the scanning period. Recently, many neurological studies
have focused on assessing connectivity dynamics to understand the
time-varying network structure in healthy controls and in patients
with a variety of disorders. These studies have shown changes in the
functional connectivity in different stages of hallucination [2] and
development [3]. Some of them have also analyzed connectivity dy-
namics in task-related [4] and resting-state functional magnetic res-
onance imaging (fMRI) data [5, 6, 7]. However, it has been shown
that dynamics is a salient feature at rest-state since rest represents
an unconstrained task [8, 9]. In this paper we focus our analysis on
resting-state fMRI data.

Most dynamic connectivity analysis methods examine time-
varying temporal dependence between brain regions but neglect
changes in the spatial networks. A previous study focused only on
spatial changes in the default mode (DM) network from healthy in-
dividuals using group independent component analysis (ICA) [10].
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The only work—to the best of our knowledge—that investigates
whole-brain time-varying spatial networks performs independent
vector analysis (IVA) using a sliding window approach and investi-
gates networks that demonstrate differences in the time-varying spa-
tial network connectivity between healthy controls and patients with
schizophrenia [11]. IVA is a joint blind source separation algorithm
that estimates sources that are maximally independent within each
dataset while exploiting dependencies across multiple datasets. Un-
like other joint blind source separation methods such as group ICA
[12], which constrains the spatial networks to be common across
subjects and joint ICA [13], which constrains the time courses to be
common across subjects, IVA relaxes these assumptions by estimat-
ing subject-specific time courses and spatial networks. It has been
successfully applied on multi-subject fMRI data and shown superior
performance in terms of preserving subject variability as compared
to the widely used group ICA method [14, 15], primarily due to this
flexibility. However, this flexibility comes at an increased cost as
it requires estimation of high-dimensional multivariate probability
density functions and as a result performance of IVA degrades as the
number of datasets increases. That is potentially a key reason for
the fact that the method in [11] is applied to the analysis of only 20
subjects.

In this paper, we propose a novel approach to resolve the high
dimensionality issue in IVA by considering pairs of subjects for an
IVA decomposition followed by a component alignment step to align
the components across IVA decompositions. We also propose to use
subject-level graph theoretical (GT) analysis for temporal graphs to
study the spatio-temporal connectivity changes. We study the dy-
namic functional network connectivity (dFNC) and dynamic spa-
tial functional network connectivity (dsFNC) strength and fluctu-
ation along with the intra-network stationarity for two groups of
subjects—healthy controls and patients with schizophrenia, and ob-
served higher intra-network dFNC and dsFNC fluctuation in patients
and a higher intra-network fluctuation in the DM, anterior DM and
frontal networks. The remainder of the paper is organized as follows,
Section 2 introduces the general IVA model and component align-
ment method followed by the description of the proposed method in
Section 3. Section 4 introduces the metrics used to study the dy-
namic spatio-temporal connectivity followed by discussion of the
results in Section 5 and Section 6 concludes the paper.

2. BACKGROUND
2.1. Independent vector analysis
IVA is a joint blind source separation technique that extends ICA to
multiple datasets, by exploiting statistical dependence across those
datasets and statistical independence within each dataset. The gen-
eral IVA model is given by, X[k] = A[k]S[k], k = 1, . . . ,K where
X[k] ∈ RT×V are the observations, A[k] ∈ RT×T is the mixing ma-
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trix and S[k] ∈ RT×V is the independent source component matrix
for the kth dataset. Here, K is the total number of datasets, V is the
number of samples and T is the number of components. The sources
are estimated using Y[k] = W[k]X[k], where W[k] ∈ RT×T is the
demixing matrix estimated by minimizing the mutual information
based cost function given as,

J (W) =

T∑
t=1

[
K∑

k=1

H
(
y
[k]
t

)
− I (yt)

]
−

K∑
k=1

log
∣∣∣det

(
W[k]

)∣∣∣ ,
where yt =

[
y
[1]
t , . . . ,y

[K]
t

]T
denotes the tth SCV, which is de-

fined by concatenating the nth source from each dataset. Mini-
mization of the cost function equally weights the minimization of
estimated source entropy,H

(
y
[k]
t

)
and maximization of the depen-

dence within the tth SCV, I (yt), thus, grouping together similar
components across datasets in one SCV.

A number of IVA algorithms have been proposed based on dif-
ferent models for the source distribution, e.g., multivariate Gaussian
(IVA-G) [16], which exploits only second order statistics through
a covariance matrix of each SCV, Σt ∈ RK×K and multivariate
Laplace (IVA-L) [17], which exploits higher order statistics. In this
paper we use IVA-GL, an IVA algorithm that initializes IVA-L using
the IVA-G result, since it has been shown to be an effective and effi-
cient way to include all-order statistical information [16]. However,
even within this structure, the covariance matrices in IVA-G require
the estimation of T (K(K − 1)/2) parameters since each matrix
is symmetric, in addition to the estimation of approximately KT 2

parameters for the demixing matrices that increase rapidly with in-
crease in the number of datasets. Thus for a fixed number of samples,
the estimation of the parameters deteriorates for large K degrading
the performance of IVA. Hence, we propose a procedure that divides
the datasets into smaller subsets to perform IVA on each subset.

3. SUBSET IVA FOR SPATIO-TEMPORAL DYNAMIC
CONNECTIVITY ANALYSIS

In order to study the spatio-temporal connectivity changes in resting-
state fMRI data we propose a three step procedure: two-subject IVA
using sliding window, component alignment, and component clus-
tering, as shown in Figure 1.
3.1. Two-subject IVA using sliding window
In this stage, we first partition each subject’s data into M time
windows using a sliding window of length L. The data from
the kth subject and mth window forms a dataset, X[m,k],m =
1, . . . ,M, k = 1, . . . ,K yielding a total of MK datasets, which
can be decomposed into MK mixing matrices, A[m,k] ∈ RL×N ,
whose columns represent the time courses and MK source matri-
ces, S[m,k] ∈ RN×V , whose rows represent independent spatial
networks. However, due to the dimensionality issue, we consider
time windows from two subjects in each IVA decomposition yielding
P = K/2 unique IVA decompositions, and estimate 2M demix-
ing matrices followed by estimation of the underlying sources,
Y[m,k] = W[m,k]X̂[m,k], m = 1, . . . ,M, k = {k1, k2} and
Y[m,k] ∈ RN×V , X̂[m,k] ∈ RN×V , W[m,k] ∈ RN×N . X̂[m,k] are
the first N principal components of X[m,k] and {k1, k2} are unique
pairwise combinations of K datasets.
3.2. Component alignment
Due to an inherent permutation ambiguity in ICA, the estimated
SCVs across multiple IVA decompositions are not aligned. Thus,
to align the components across all IVA decompositions, we use the
linear assignment problem (LAP) [18]. Instead of aligning N com-
ponents from MK datasets, we minimize our problem by comput-
ing an average across 2M windows in each SCV, ȳ(p)

n , thus yield-
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Fig. 2. A temporal graph of 5 nodes at M time instances. A thick
edge represents higher connection between the corresponding nodes
and vice-versa. For each pair of nodes, we compute the average
connectivity strength and connectivity fluctuation.

ing N mean components for P decompositions. A distance matrix,
D(p1,p2) is calculated for each decomposition pair, where each el-
ement is given by, dn1,n2 = 1 − I(ȳ

(p1,p2)
n1 , ȳ

(p1,p2)
n2 ), n1, n2 ∈

{1, . . . , N}, p1, p2 ∈ {1, . . . , P}. I(·) denotes the normalized
mutual information operator defined in (2). We obtain the mini-
mum cost of assigning the components using the Hungarian algo-
rithm [19] followed by a weighted graph with P nodes and edges
as the minimum cost of LAP. A central node is computed using an
MST by finding the minimum cost sub-graph connecting all nodes
and the components in each decomposition are aligned as per the
central node.
3.3. Component clustering
The component alignment step aligns the mean components, yn, n =

1, . . . , N , across P subject pairs such that ȳ(p)
n for all p ∈ {1, . . . , P}

represent similar networks. However, since real data does not fol-
low the IVA model exactly, some components are not estimated
consistently and are mis-aligned in the component alignment step,
as shown in Figure 1. In order to remove the mis-aligned compo-
nents from further analysis, we perform hierarchical clustering to
cluster the aligned components in one cluster and the misaligned
components in a different cluster. A dendrogram is used to visualize
the hierarchy of clusters with a correlation threshold of c used to
separate two clusters, i.e., if the correlation between two clusters is
greater than c then the two clusters are merged to form one cluster.
The cluster that includes highest number of decomposition pairs is
denoted as the aligned cluster and used for further analysis.

4. DYNAMIC CONNECTIVITY METRICS
4.1. Inter-network dynamic connectivity analysis
We use GT analysis defined for temporal graphs [20] to summarize
the connectivity changes in the time-varying functional and spatial
networks. For each subject, we obtain two temporal graphs using
time courses and spatial maps, each formed from a set of N nodes
and N(N −1)/2 edges for each time window, as shown in Figure 2.
We define an edge between two time courses using the absolute value
of Pearson’s correlation coefficient and an edge between two spatial
components using the normalized mutual information defined in 2.
Let an edge between node n1 and n2 at time interval m be denoted
as an1n2(m),m = 1, . . . ,M, n1, n2 = {1, . . . , N}. The inter-
network connectivity strength between node n1 and n2 between time
interval m and m + 1 is defined as follows [20],

Cn1n2(m,m + 1) =
an1n2(m)an1n2(m + 1)√
[an1n2(m)] [an1n2(m + 1)]

, (1)

where {n1, n2} represent all unique pairs and m = 1, . . . ,M − 1.
The inter-network dynamic connectivity strength is thus obtained as,

C̄n1n2 =
1

M − 1

M−1∑
m=1

Cij(m,m + 1).

A higher value of C̄n1n2 indicates higher dynamic connectivity
strength between nodes n1 and n2. The inter-network dynamic con-
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bA[1] bA[K]
ym y

[K]
m M . . . }

M[k] X = AS X A S
P

X[k,1] X[k,M] X[k+1,1] X[k+1,M]

A[k,1] A[k,M] A[k+1,1] A[k+1,M]

Y[k,1] Y[k,M] Y[k+1,1] Y[k+1,M]

1

⇣
X[1]

⌘T ⇣
X[K]

⌘T
X[k] X̄[1] X̄[K] Ā[1] Ā[K] Y[1] Y[K]
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bA[1] bA[K]
ym y

[K]
m M . . . }

M[k] X = AS X A S
P bN( bN�1)

2
bN T V L N

X[k,1] X[k,M ] X[k+1,1] X[k+1,M ]

A[k,1] A[k,M ] A[k+1,1] A[k+1,M ]

Y[k,1] Y[k,m] Y[k,M ] Y[k+1,1] Y[k+1,M ] 1 m M

Subject k

Subject k + 1

1

⇣
X[1]

⌘T ⇣
X[K]

⌘T
X[k] X̄[1] X̄[K] Ā[1] Ā[K] Y[1] Y[K]
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Fig. 1. Proposed three-stage method: (a) two-subject IVA using a sliding window (b) component alignment and (c) component clustering.

nectivity fluctuation between two nodes n1 and n2 by computing the
standard deviation of (1) across all windows. This metric measure
the variability of the inter-network connectivity across time instants.

4.2. Intra-network stationarity
In order to study the fluctuations in the activation in the spatial net-
work across time windows, we use normalized mutual information,
which is defined as follows,
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where I(·) denotes the non-normalized mutual information obtained
using [21]. We then define the intra-network stationarity metric as,

Ī [k]n =
1

M − 1

M−1∑
m=1

I
(
y[m,k]
n ,y[m+1,k]

n

)
, n = 1, . . . , N

Thus Ī [k]n indicates the level of stationarity, where 0 indicates the
network activation is highly variable and 1 indicates it is stable.

5. RESULTS
We apply the proposed method on a dataset from the Center for
Biomedical Research Excellence (COBRE) (http://coins.mrn.org/dx)
[22] that consist of 90 healthy controls (HCs) (average age: 38±12)
and 88 patients with schizophrenia (SZs) (average age: 37 ± 14)
obtained during rest with their eyes open. The fMRI image scans
were collected using a 3-Tesla Siemens scanner over an interval
of 300 seconds with a sampling period of 2 seconds yielding 150
timepoints per subject. The first 6 timepoints are removed due to an
observed T1-effect. Each subject’s image data is then pre-processed
for re-alignment, slice-time correction, spatial normalization and re-
sampled to 3× 3× 3mm3 giving 53× 63× 46 voxels. Masking on
each image volume is performed on to remove the non-brain voxels
and flattened to form an observation vector of V = 58604 samples,
giving T = 144 observations for each subject. Each dataset is
partitioned into M = 19 windows of length L = 36 with an overlap
of 30 time points between adjacent time windows.

After partitioning each subject’s data, we select two unique sub-
jects from either SZs or HCs for an IVA decomposition, hence we
have a total of P = 89 (45 HC pairs + 44 SZ pairs) IVA decomposi-
tions. We obtain 10 independent solutions of W[m,k] using IVA-GL
and obtain the best solution using MST approach proposed in [23].
We estimate N = L = 36 components in each IVA decomposi-
tion followed by component alignment and clustering to remove the
misaligned subject pairs. We obtain a dendrogram for each compo-
nent after alignment using a threshold of c = 0.2 to visualize the

Fig. 3. Dendrogram of parietal component. The spatial maps rep-
resents the significant activation areas across the subject pairs in the
corresponding cluster, obtained using one-sample t-test. Red clus-
ter includes the perfectly aligned subject pairs while the blue cluster
includes the misaligned subject pairs.

clustering. An example of the dendrogram obtained for the pari-
etal component in shown in Figure 3. A low threshold is considered
to account for subject variability. The dendrograms for most com-
ponents show clear clustering for the aligned and misaligned subject
pairs as in Figure 3. Since dsFNC and dFNC analysis is between any
two components, the misaligned subject pairs for both corresponding
components are removed, while for average mutual information only
the misaligned subject pairs for that component are removed. Thus,
for each component, the remainder dataset consists of subjects in the
range 126 to 176, with 47% to 52% HCs, indicating enough samples
in each group.

After alignment and clustering, we perform component selec-
tion to select the components of interest since some of the estimated
IVA components show activation in the brainstem nuclei and some
are motion artifacts. Of the 36 components, we select 15 function-
ally relevant components based on visual inspection and clustering,
since these components yield tightly packed clusters unlike the noise
components, which yield multiple uncorrelated clusters. For each
selected component, we perform a one-sample t-test on each voxel
across all the aligned mean components to generate t-statistic map,
which represents the significantly activated region across all sub-
ject pairs [24]. The t-statistic maps of the selected components are
shown in Figure 4.
5.1. Inter-network dynamic connectivity analysis
We compute inter-network dynamic connectivity strength and fluc-
tuation using time courses and spatial networks for all the pairwise
combination of the selected components, i.e., 105 distinct combi-
nations. We then compute a two-sample t-test and Mann-Whitney
U-test on dynamic connectivity strength and dynamic connectivity
fluctuation respectively, in order to find edges that demonstrate sig-
nificant difference between two groups. The edges that demonstrated
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Fig. 4. Of the 36 estimated components, we select 15 functionally
relevant components for dynamic connectivity and intra-network sta-
tionarity analysis.
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Fig. 5. (a) All network pairs indicate higher inter-network dynamic
connectivity strength in patients using time courses. (b) All net-
work pairs except the parietal-visual connection show higher inter-
network dynamic connectivity fluctuation in patients using time
courses.

significant (p < 0.05, false discovery rate (FDR) corrected) differ-
ence between the two groups using time courses and spatial networks
are shown in Figure 5 and 6 respectively. Each node in Figure 5 and
6 denotes a spatial network or time course while the edge connect-
ing them denotes the level of discrimination between HCs and SZs.
A thick line represents a lower p-value, i.e., higher discrimination
between the two groups and vice-versa.

Consistent results are observed using the dynamic connectivity
strength using time course and spatial networks in the DM-insular
connectivity. Our results indicate higher dFNC and dsFNC strength
in patients in the DM-insular conectivity and higher fluctuation in
the dsFNC is observed in patients. Similar results were observed in
[25], in which higher connectivity strength is observed among DM
and the salience network, whose prominant node lies in the insular
region, in patients. The study also shows no significant difference
in the fluctuation of the dFNC in this network pair. This study also
shows higher strength in the DM-central executive network (fronto-
parietal region) which is also observed in the dsFNC analysis. Stud-
ies have shown aberrant connectivity between cerebellar and asso-
ciated network, indicating its importance in the pathophysiology of
schizophrenia. Higher dFNC strength is observed between cerebel-
lar and associated functional networks, especially among the DM-
cerebellum region, which is consistent with the findings in [26].
5.2. Intra-network stationarity
We also compute intra-network stationarity metric for all selected
components after removing the misaligned subject pairs. We com-
pute a two-sample t-test on each component’s values to test for dif-
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Fig. 6. (a) All network pairs indicate higher inter-network dynamic
connectivity strength in patients using spatial networks. (b) All net-
work pairs indicate higher inter-network dynamic connectivity fluc-
tuation in patients using spatial networks.
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Fig. 7. Intra-network stationarity for the components that demon-
strated significant (p < 0.05) difference between HCs and SZs. The
read line is the median, top and bottom edges of the blue box is the
25th and 75th percentile, the dotted line extends from maximum to
minimum and ’+’ denotes the outliers.

ferences between HCs and SZs. The boxplots for the networks that
demonstrated significant (p < 0.05, FDR corrected) group differ-
ence between HC and SZ groups are shown in Figure 7. Higher
network fluctuation is observed HCs when compared with SZs in
the DM, anterior DM and frontal regions of the brain. Similar re-
sults were observed in [11], where the authors noted that DM tends
to fluctuate between states in HCs when compared with SZs.

6. CONCLUSION
In this paper, we proposed a method to analyze the spatio-temporal
connectivity changes in rest-state fMRI data and show that dFNC
and dsFNC are both prominant features to distinguish the underly-
ing structure of the brain in healthy controls and in patients with
schizophrenia. In general, we observe higher inter-network dy-
namic connectivity fluctuation in patients, which is justified since
patients with schizophrenia are known to have abnormal connec-
tivity/dysconnectivity pattern. Higher inter-network dynamic con-
nectivity fluctuations are observed in patients with schizophrenia
among the DM-salience network, DM-LFP, anterior DM-associated
network and cerebellar-associated networks. Intra-network connec-
tivity analysis indicates higher fluctuation in the DM, anterior DM
and frontal region in controls when compared with patients. The
success of the proposed method suggests further studies to evaluate
the robustness under variable sliding window lengths to vary the
temporal resolution.
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